Journal of Mathematics and Statistics 7 (2): 144-148, 2011 ISSN 1549-3644 © 2010 Science Publications

Modules in $\sigma[M]$ with Chain Conditions on δ_M Small Submodules

Ali Omer Alattass Department of Mathematics, Faculty of Science, Hadramout University of science and Technology, P. O. Box 50663, Mukalla, Yemen

Abstract: Problem statement: Let M be a right module over a ring R. In this article modules in $\sigma[M]$ with chain conditions on δ_{M^-} small submodules are studied. Approach: With the help of known results about M- singular, Artinian and Noetherian modules the techniques of the proofs of our main results use the properties of δ_{M^-} small, δ_{M^-} supplement and δ_{M^-} semimaximal submodules. Results: Modules in $\sigma[M]$ with chain conditions on δ_{M^-} small are investigated, δ_{M^-} semimaximal submodule is defined. Some Properties of δ_{M^-} semimaximal submodules are proved. As application a new characterization of Artinian module in $\sigma[M]$ is obtained in terms of δ_{M^-} small submodules and δ_{M^-} semimaximal submodules. Conclusion/Recommendations: Our results certainly generalized several results obtained earlier.

Key words: Small submodules, supplement submodules, chain conditions, M-singular, supplemented module, finitely generated, uniform dimension, nonzero submodules, positive integer

INTRODUCTION

Throughout this research, R denotes an associative ring with unity and modules M are unitary right Rmodules Mod-R denotes the category of all right Rmodules. Let M be any R - module. Any R- module N is M -generated (or generated by M) if there exists an epimorphism $f: M^{(\Lambda)} \to N$, for some indexed set Λ . An R -module N is said to be subgenerated by M if Nis isomorphic to a submodule of an M -generated module. We denote by $\sigma[M]$ the full subcategory of the right Rmodules whose objects are all right R-modules subgenerated by M. Any module $N \in \sigma[M]$ is said to be M-singular if $N \cong L/K$, for some $L \in \sigma[M]$ and K is essential in L The class of all M-singular modules is closed under submodules, homohorphic images and direct sums. The concept of small submodule has been generalized to δ - small submodule by Zhou (2000). Zhou called a submodule N of a module M is δ - small in M (notation $N \leq_{\delta} M$) if, whenever N+X=M with M/X singular, we have X=M Ozcan and Alkan consider this notation in $\sigma[M]$ For a module N in σ[M], Ozcan and Alkan (2006) call a submodule L of N is $\delta\text{-}M$ small submodule, written $\,L\,\ll_{\delta_M}$ N, in N if L. $+K \neq N$ for any proper submodule K of N with N/K Msingular. Clearly, if Lis δ - small , then L is a δ_M – small submodule.

MATERIALS AND METHODS

Hence δ_M – small submodules the are generalization of δ - small submodules in the category Mod-R Let L,K be two submodules of M L is called a δ- supplement of Kin M if M= L+K and L∩K \ll_{δ} L. L is called a δ - supplement submodule of M if L is a δ supplement of some submodule of M.M is called a δ – supplemented module if every submodule of M has a δ - supplement in M. If for every submodules L,K of M with M=L+K there exists a δ -supplement N of L in Msuch that $N \leq K$, then M is called an amply δ – supplemented module. Now , let $N \in \sigma[M]$ and $L, K \leq N$. L is called a δ_M -supplement of K in N if N=K+L and $K \cap L \ll_{\delta_M} L$. L is called a δ_M -supplement submodule of N if L is a δ_M -supplement of some submodule of N Nis called a δ_M – supplemented module if every submodule of N has δ_M – supplement. On the other hand N is called an amply δ_M – supplemented module if for every submodules L,K with N= L+K there exists a δ_M – supplement X of L such that $X \leq K$. For the other definitions and notations in this study we refer to Anderson and Fuller (1974) and Wisbauer (1991).

The properties of δ - small submodules that are listed in in Zhou (2000) Lemma 1.3 also hold in $\sigma[M]$.

We write them for convenience Ozcan and Alkan, (2006) lemma 2.3, Lemma 2.1).

Lemma 1.1: Let $N \in \sigma[M]$:

- 1. For modules K and L with, $K \le L \le N$, we have $L \ll_{\delta_M} N$ if and only if $K \ll_{\delta_M} N$ and $L/K \ll_{\delta_M} N/K$
- 2. For submodules K and L of N, $K + L \ll_{\delta_M} N$ if and only if $K \ll_{\delta_M} N$ and $L \ll_{\delta_M} N$
- 3. If $K \ll_{\delta_M} N, L \in \sigma[M]$ and $f: K \to L$ is a homomorphism, then $f(k) \ll_{\delta_M} L$ In particular, if $K \ll_{\delta_M} N \leq L$, then $K \ll_{\delta_M} L$
- 4. If $K \leq L \leq^{\oplus} N$ and $K \ll_{\delta_M} N$, then $K \ll_{\delta_M} L$

Also Ozcan and Alkan (2006) consider the following submodule of a module N in σ [M] Zhou (2000).

 $\delta_{M}(N) = \bigcap \{K \le N : N / K \text{ is } M \text{- singular simple } \}$

The next Lemma is proven in Alattass (2011).

Lemma 1.3: Let $N \in \sigma[M]$ be δ_M -supplemented. Then $N/\delta_M(N)$ is semisimple.

RESULTS AND DISCUSSION

Theorem 2.1: Let $N \in \sigma[M]$. Then $\delta_M(N)$ is Noetherian if and only if N satisfies ACC on δ_M – small submodules.

Proof: By lemma 1.2, every ascending chain of δ_M – small submodules of N is ascending chain submodules of $\delta_M(N)$. Hence the necessity is clear.

Sufficiency: Suppose to the contrary that $\delta_M(N)$ is not Noetherian. Then there is a properly ascending chain $N_1 \le N_2 \le \cdots$ of submodules of $\delta_M(N)$. Let $n_1 \in N_1$ and $n_i \in N_i - N_{i-1}$, for each i > 1. For each $j \ge 1$, let $K_j = \sum_{i=1}^{i=j} n_i R$. Hence K_j is finitely generated and $K_j \le \delta_M(N)$. So, by Lemma 1.2 and Lemma 1.1, $K_j \ll_{\delta_M} N$, for each $j \ge 1$. Hence $K_1 \le K_2 \le \cdots$ is a properly ascending chain of δ_M – small submodules of N. This implies N fails to satisfy ACC on δ_M – small submodules, a contradiction. Thus $\delta_M(N)$ is Noetherian. Recall that a module M is said to have a uniform dimension n, where n is a nonnegative integer , if n is the maximal number of summands in a direct sum of nonzero submodules of M. In this case we write u.dim M = n and we say M has a finite uniform dimension.

Theorem 2.2: For any $N \in \sigma[M]$, the following are equivalent:

- a) $\delta_{M}(N)$ has a finite uniform dimension.
- b) Every δ_{M} small submodules of N has a finite uniform dimension and there exists a positive integer n such that u.dim L \leq n, for any L $\ll_{\delta_{M}}$ N.
- c) N does not contain an infinite direct sum of nonzero δ_M small submodules of N

Proof: (a) \Rightarrow (b). This is clear as any δ_M – small submodule of N is contained in $\delta_M(N)$.

 $(b) \Rightarrow (c). \quad \text{Assume that} \quad N_1 \oplus N_2 \oplus \cdots \text{ is an infinite} \\ \text{direct sum of nonzero } \delta_M - \text{small submodules of N.} \\ \text{Then, by lemma 1.1,} \quad N_1 \oplus N_2 \oplus \cdots \oplus N_{n+1} \ll_{\delta_M} N \text{ and} \\ \text{hence} \qquad u.\text{dim}(N_1 \oplus N_2 \oplus \cdots \oplus N_{n+1}) \ge n+1, \qquad a \\ \text{contradiction to the hypothesis. Hence (C) follows.}$

(c) \Rightarrow (a). Let $N_1 \oplus N_2 \oplus \cdots$ be an infinite direct sum of nonzero submodules of $\delta_M(N)$. For each $i \ge 1$, let n_I be a nonzero element of N_I Hence, by Lemmas 1.1 and 1.2, $n_i R \ll_{\delta_M} N$. Thus $n_1 R \oplus n_2 R \oplus \cdots$ is an infinite direct sum of nonzero δ_M – small submodules of N This contradicts (C) and hence $\delta_M(N)$ has a finite uniform dimension.

Theorem 2.3: Let $N \in \sigma[M]$. Then the following are equivalent:

- a) $\delta_{M}(N)$ is Artinian.
- b) Every δ_M small submodule of N is Artinian.
- c) satisfies DDC on δ_M small submodules of N

Proof: (a) \Rightarrow (b). This is clear as every δ_M – small submodules of N is a submodule of $\delta_M(N)$. (b) \Rightarrow (c). This is obvious.

(c) \Rightarrow (a). By Anderson and Fuller (1994), proposition 10.10) it will be suffice to show that every factor module of $\delta_M(N)$ is finitely cogenerated. For this suppose that there exists a factor module of $\delta_M(N)$ which is not finitely cogenerated. Then the set

$$\begin{split} &\Lambda = \{L \leq \delta_M(N) : \delta_M(N) / L \text{ is not finitely cogenerated} \} \text{ is } \\ &\text{nonempty }. \text{ We show that } \Lambda \text{ has a minimal member.} \\ &\text{Let } \{L_\alpha\}_{\alpha \in \Gamma} \text{ be a chain of submodules in } \Lambda \text{ Consider} \\ &\text{the submodule } L = \bigcap_{\alpha \in \Gamma} L_\alpha. \quad \text{If } L \not\in \Lambda, \text{ then } \\ &\delta_M(N) / L \text{ finitely cogenerated and so } L = L_\alpha, \text{ for some} \\ &a \in T \text{ a contradiction. This contradiction gives } L \in \Lambda \text{ and} \\ &\text{we conclude that every chain of } \Lambda \text{ has a lower bound} \\ &\text{in } \Lambda. \text{ Hence, by Zorn's lemma, } \Lambda \text{ has a minimal member } K. \end{split}$$

We claim that $K \ll_{\delta_M} N$. First we show Soc $(\delta_M(N)/K)$ is not finitely generated. Let $x \in \delta_M(N)$ and $x \notin K$. By lemmas 1.2-1.1, $xR \ll_{\delta_M} N$. Hence xR is Artinian. This implies (xR + K)/K is a nonzero Artinian as $(xR + K)/K \cong xR/(xR \cap K)$. Therefore (xR + K)/K and hence $\delta_M(N)/K$ has an essential socle. Thus Soc $(\delta_M(N)/K)$ is not finitely generated Anderson and Fuller (2000), Proposition 10.7.

Now suppose that U is a submodules of N such that N = K + U with N/U M- singular. Let V be a submodule of $\delta_M(N)$, containing K such that $V/K = \text{Soc}(\delta_M(N)/K)$. Then we have $V = K + (U \cap V)$. Suppose to the contrary that $K \cap U \neq K$. Then $\delta_M(N)/(K \cap U)$ is finitely cogenerated. But $V/K \cong (K + (U \cap V))/K \cong (U \cap V)/(K \cap U)$

 $\leq \operatorname{Soc}(\delta_{M}(N)/(K \cap U))$. So V/K is finitely generated, a contradiction. This contradiction gives $K \cap U = K$ and hence N=U Thus $K \ll_{\delta_{M}} N$.

Next we show $V \ll_{\delta_M} N$. Suppose that $W \le N$ such that N=V+W with N/W M- singular. Then $N/(K+W) = (U+W)/(K+W) \cong U/(K+U\cap W)$, implying that N/(K+W) is semisimple. If $N \ne K+W$ then K+W N is contained in a maximal submodule Z of N Therefore N/Z is M- singular simple. It follows that $U \le \delta_M(N) \le Z$ and so N=Z, a contradiction. Thus N=K+W which will imply N=W So $V \ll_{\delta_M} N$. Therefore, by the hypothesis, V and hence V/K is Artinian.

The following example explain that if every δ_{M} -small submodule of N is Noetherian, then δ_{M} -(N) need not be Noetherian.

Example 2.4: Let $R = \mathbb{Z}, M = \mathbb{Z}$ and let $N = \mathbb{Z}_{(p^*)}$, the Prufer P- group. Hence N is an R- module in fact $N \in \sigma[M]$. It is known that every submodule of N is Noetherian, but N is not Noetherian. Moreover $\delta_M(N) = N$ Wang (2007), Example 2.6.

Remark: If we look to a ring R as a module over it self and taking M=R in 2.1,2.2, 2.3 we get the results 2.3, 2.4,2.5 in Wang (2007) respectively.

Recall that a submodule N of an R- module M is called a δ - semimaximal submodule if $N = \bigcap_{\alpha \in \Lambda} N_{\alpha}$, for some finite set Λ with $N_{\alpha} \leq M$ and M / N_{α} singular simple, for each $\alpha \in \Lambda$. Here we consider this definition in the category $\sigma[M]$.

Definition 2.5: Let $N \in \sigma[M]$ and $K \le N$. K is called δ_M – semimaximal submodule of N if there is a finite collection $\{A_{\alpha}\}_{\alpha \in \Lambda}$ of submodules of N such that $K = \bigcap_{\alpha \in \Lambda} A_{\alpha}$ and N / A_{α} M- singular simple for any $\alpha \in \Lambda$.

Since any M- singular module is singular, any δ_M – semimaximal submodule of $N \in \sigma[M]$ is δ – semimaximal submodule of N. The next example gives a module with a δ – semimaximal submodule which is not δ_M – semimaximal submodue.

Example 2.6: Let M be a simple non projective module. Then M is singular and not M-singular Wisbauer (1991). Hence the trivial submodule is a δ -semimaximal submodule of M but it is not δ_M - semimaximal submodule.

Lemma 2.7: Let $N \in \sigma[M]$. Then:

- 1. $\delta_M(N)$ is contained in any δ_M semimaximal submodule of N
- 2. If N has DDC on the δ_M semimaximal submodules, then N has a minimal δ_M semimaximal submodule

Proof: The proof is standard and is omitted.

Theorem 2.8: Let $N \in \sigma[M]$. Then the following statements are equivalent:

- a) N is Artinian
- b) N satisfies DCC on δ_M small submodules and on δ_M semimaximal submodules
- c) N satisfies DCC on δ_M small submodules and $\delta_M(N)$ is δ_M – semimaximal submodule
- d) N amply δ_M supplemented satisfies DCC on δ_M small submodules and δ_M suplementet submodules.

Proof: (a) \Rightarrow (b). Is obvious.

and

(b) \Rightarrow (c). Let K be a minimal δ_{M} – semimaximal submodule of N. We show that $\delta_M(N) = K$.

Lemma 2.7 (1), If $\delta_{M}(N) = N$, then, by $N = \delta_M(N) \leq K$ and $\delta_{M}(N) = K.$ Suppose so the definition of $\delta_{M}(N)$ that $\delta_M(N) \neq N$. By and Lemma 2.7 (1) it is suffice to show $K \le L$, for any submodule L of L with N/L is M- singular simple. If $L \le N$ such that N/L is M- singular simple, then $K \cap L$ is δ_M – semimaximal submodule of N Hence, by the minimality of K, $K \cap L = K$ and so $K \leq L$.

(c) \Rightarrow (a). If N = $\delta_M(N)$, then N is Artinian by Theorem 2.3. Suppose that $N \neq \delta_M(N)$. Then $\delta_{M}(N) = \prod_{i=1}^{n} L_{i}$, where N / L_i is M- singular simple for each i=1,...n Therefore $N/\delta_M(N)$ is isomorphic to a submodule of the finitely generated semisimple module $\bigoplus^{i=n} N/L_i$. Hence $N/\delta_M(N)$ and so N is Artinian.

(d) \Rightarrow (a). Suppose that N is an amply δ_M supplemented which satisfies DCC on δ_M supplement submodules and δ_M^- small submodules. Then, by Theorem 2.3, $\delta_M(N)$ is Artinian and hence it is suffices to show $N/\delta_M(N)$ is Artinian. $N/\delta_{M}(N)$ is semisimple by Lemma 1.3.

We claim that $N / \delta_M(N)$ is Noetherian.

Suppose that $\delta_M(N) \le N_1 \le N_2 \le \cdots$ is ascending chain of submodules of N.

We show by induction there exists descending chain of submodules $K_1 \ge K_2 \ge \cdots$ such that K_i is $\delta_{_M} - supplement \; N_i \; \; of \; \; in \; n \; for \; each \; \; i \geq 1.$

Since N=N₁+N N is amply δ_M and supplemented, there exists $a\delta_M$ supplement K₁ of N₁ in N Then $N=N_1+K_1$. Again since $N=N_2+K_1,K_1$, contains a δ_M supplement K_2 of N_2 in N. Now assume $r \ge 1$ and there is a descending $\mathbf{K}_1 \ge \mathbf{K}_2 \ge \cdots \ge \mathbf{K}_r$ of submodules such that K_1 is δ_M supplementet of N_I in for each i=1,2,...r Hence $N = N_r + K_r$ and so Ν $N = N_{r+1} + K_r$. Again since Nis amply δ_{M} supplemented, we have a δ_M supplement K_{r+1} of N_{r+1} in N Proceeding in this way we see that there exists a descending chain of submodules $K_1 \ge K_2 \ge \cdots$ such that K_i is δ_M – supplement of N_i in N for each $i \ge 1$. By the hypothesis there exists a positive integer m such that $K_n = K_m$, for each $n \ge m$. Since $N = N_i + K_i$

and
$$\begin{split} N_i \cap K_i &\subseteq \delta_M(N), \\ N / \delta_M(N) &= N_i / \delta_M(N) \oplus (K_i + \delta_M(N) / \delta_M(N). \text{ Thus} \end{split}$$

 $N_n = N_m$, for each $n \ge m$. Therefore $N / \delta_M(N)$ is Noetherian and hence finitely generated. Thus $N / \delta_{M}(N)$ is Artinian.

Note: The condition N is amply δ_M supplemented in the statement (d) in Theorem 2.8 cannot be deleted (see the following example).

Example 2.9: Take RZ and M=Z It is clear that $M \in \sigma[M], M$ satisfies DCC on δ_M supplement submodules and δ_M small submodules, but M is not Artinian.

The next corollary follows from the proof of (b) \Rightarrow (c) in 2.8 and Lemma 2.7(1).

Corollary 2.9: If N satisfies one of the conditions of Theorem 2.8, then $\delta_{M}(N)$ is the least δ_M – semimaximal submodule of N .

Corollary 2.10: The following statements are equivalent for any R- moduleN.

- a) N is Artinian.
- b) N satisfies DCC on δ_N small submodules and on δ_{N} – semimaximal submodules.
- c) N satisfies DCC on $\delta_{\scriptscriptstyle N}-$ small submodules and $\delta_N(N)$ is δ_N – semimaximal submodule.
- d) N is amply δ_N supplemented satisfies DCC on δ_N – small submodules and δ_N – supplement submodules.
- e) N satisfies DCC on δ small submodules and on δ – semimaximal submodules.
- N satisfies DCC on δ small submodules and f) $\delta(N)$ is δ_N – semimaximal submodule.
- g) N is amply δ -supplemented satisfies DCC on δ – small submodules and δ – supplement submodules.

Proof: (a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d) is by taking M=N in Theorem 2.8 and (a) \Leftrightarrow (e) \Leftrightarrow (f) \Leftrightarrow (g) by taking M=R in 2.8.

Remark: The equivalence of (a,e,f,g) has been proved by Wang (2007), Proposition 2.8 and Theorem (3.10) Then Theorem 2.8 is an extension of such results.

Corollarv 2.12: А finitely generated $\delta_{\rm M}$ – supplemented module N in $\sigma[{\rm M}]$ is Artinian if and only if N satisfies DCC on δ_M – small submodules.

Proof: The necessary part is trivial.

Sufficiently part, suppose that N is a finitely generated δ_M – supplemented module in $\sigma[M]$ satisfies DCC on δ_M – small submodules. Then, by Lemma 1.3, N/ $\delta_M(N)$ is semisimple and hence it must be Artinian as N is finitely generated. By the hypothesis and 2.3, $\delta_M(N)$ is Artinian. Thus N is Artinian.

We end this Article by showing that every factor module of a δ_M – supplemented module that satisfies ACC on δ_M – small submodules is also satisfies ACC on δ_M – small submodules.

Theorem 2.13: Let $N \in \sigma[M]$ be δ_M supplemented module. If N satisfies ACC on δ_M small submodules, then so does every factor modules of N.

Proof. Let $L \leq N$ and let $L_1 / L \leq L_2 / L \leq \cdots$ be an ascending chain of a δ_M – small submodules of N/L. Since N is a δ_M – supplemented module and L \leq N, there exists a submodule K of N such that N = L + K and $L \cap K \ll_{\delta_M} K$. Hence $N/L \cong (L+K)/L \cong K/L \cap K$. Let $f: N/L \rightarrow K/L \cap K$ be an isomorphism. Therefore for each $i \ge 1$, there exists a submodule K_i of N containing $L \cap K$ such that $f(L_i / L) = K_i / K \cap L$. Hence, by Lemma 1.1, $f(L_i / L) = K_i / K \cap L \ll_{\delta_M} K / L$. Now we show that $K_i \ll_{\delta_M} N$, for each $i \ge 1$. Suppose that $X \le N$ such that $N = K_i + X$, with N / X M- singular. $N / K \cap L = K_i / K \cap L + (X + L \cap K) / L \cap K.$ Then But $K_i / K \cap L \ll_{\delta_M} K / L$ and $N / (X + L \cap K)$ is M-singular. So $N / K \cap L = (X + L \cap K) / L \cap K$ and hence $N = (L \cap K) + X$. Therefore N=X. Thus we have a sending chain $K_1 \le K_2 \le \cdots$ of δ_M – small submodules of N. Then, by the hypothesis, there exists a positive integer n such that $K_n = K_{n+1} = \cdots$.

This implies $L/L_n = L/L_{n+1} = \cdots$. Therefore N/L satisfies ACC on δ_M – small submodules.

CONCLUSION

For any module N in $\sigma[M]$ we have obtained a necessary and sufficient conditions for the sum of all δ_M – small submodules of N to has a finite uniform dimension. Also it is shown that (i) the sum of all δ_M – small submodules of N is Noetherian (Artinian) if and only if N satisfies ACC (DCC) on δ_M – small submodules. (ii) Every factor module of a δ_M – supplemented module in $\sigma[M]$ with ACC on

 δ_{M} – small submodules is also has ACC on δ_{M} – small submodules . (iii) N is Artinian if and only if Ν satisfies DCC on δ_M – small submodules and on δ_M – semimaximal submodules if and only if Ν amply δ_M – supplemented satisfies DCC on δ_M – small submodules and on $\delta_{\rm M}$ – supplement (iv) If N is finitely generated submodules. δ_M – supplemented, then N is Artinian if and N only if N satisfies DCC on δ_M – small submodules.

ACKNOWLEDGEMENT

The author is thankful for the facilities provided by department of mathematics , at Universiti Tekonologi Malaysia during his stay.

REFERENCES

- Alattass, A., 2011. On δ_{M} Supplemented and δ_{M} Lifting modules (submitted).
- Anderson, F.W. and K.R. Fuller, 1974. Rings and Categories of Modules. 1st Edn., Springer-verlage, New York, ISBN-10: 0387900705, pp: 339.
- Ozcan, A.C. and M. Alkan, 2006. Semiperfect modules with respect to a preradical. Comm. Alg., 34: 841-856. DOI: 10.1080/00927870500441593
- Wang, Y., 2007. δ small submodules and δ supplemented Modules. Int. J. Math. Math. Sci., 2007: 1-8. DOI: 10.1155/2007/58132
- Wisbauer, R. 1991. Foundations of Module and Ring Theory: A Handbook for Study and Research. 1st Edn., Gordon and Breach Science Publishers, USA., ISBN-10: 2881248055, pp: 606.
- Zhou, Y.Q., 2000. Generalizations of Perfect, Semiperfect, and semiregular rings. Alg. Coll., 7: 305-318.