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Abstract: Food waste in today's society has been the subject of growing interest 
and discussion, given its economic, environmental, social, and nutritional 
implications. Although food waste is present throughout the food supply chain, 
in developed countries it tends to be higher in the final stages of consumption 
(e.g., households and food services). This study focuses on institutional 
canteens, where food waste includes prepared meals that have not been sold 
(i.e., leftovers), as well as food served that is left on plates after the meal has 
been consumed (i.e., scraps). It presents a first step towards developing a 
prototype/solution based on computer vision techniques to identify and 
quantify food waste in an institutional canteen. It begins by introducing the 
related concepts. It then surveys the state-of-the-art and categorizes existing 
solutions, presenting their main characteristics, strengths, and limitations. 
Inception-V3 and ResNet-50 are identified as the most promising computer 
vision techniques, and their performance has been evaluated. Information is 
also provided on open questions and research directions in this area. 
 
Keywords: Food Waste, Food Classification, State-of-the-Art, Computer 
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Introduction 

Food waste is emerging as an issue of growing interest 
and discussion, given the economic, environmental, social, 
and nutritional implications. It is a global problem, 
manifested by the considerable loss of food throughout the 
supply chain (Gustavsson et al., 2011). This phenomenon, 
which is particularly evident at the retail and final 
consumption stages (Correia et al., 2022), is the result of the 
behavior adopted by retailers and consumers, leading to a 
substantial reduction in edible food mass (Storup, 2016). The 
magnitude of this challenge is alarming, considering that 
approximately one-third of food intended for human 
consumption, equivalent to around 1.3 billion tons per year, 
is lost or wasted on a global scale (Gustavsson et al., 2011). 
The significance of addressing this matter is 
unquestionable, underscoring the importance of target 12.3 
of the Sustainable Development Goals (SDGs). This target 
seeks to halve per capita food waste by 2030, encompassing 
retailers and consumers, as well as production and supply 
chains (Kateřina and Adriana, 2023). 

The work presented in this study focuses on institutional 
canteens, where food waste covers both prepared meals that 
have not been sold (i.e., leftovers) and food that remains on 
plates after the meal has been consumed (i.e., scraps). 
Nonetheless, even though the main focus is on institutional 
canteens, all sectors of food waste are explored, including 
"Households," "Retail and Distribution," "Restaurants 
and Food Services," "Food Production," and "Primary 
Production." This approach allows us to understand 
ongoing efforts and practices in these sectors and to gain 
insights into the current landscape of food waste 
management. Additionally, it is of particular interest to 
further explore what is being done in computer vision 
across these sectors, as it will provide valuable knowledge 
for application in institutional canteens. 

This study serves as the basis for the future 
development of a viable prototype/solution that can 
contribute to reducing food waste in an institutional 
canteen. It will incorporate computer vision techniques, 
low-cost IoT components, and cloud computing. 

Thus, this study presents a state-of-the-art analysis of 
current knowledge about food waste in the final stages of 
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consumption through the analysis of similar or related 
published work. It aims to provide a comprehensive 
overview of what has been done in related fields. It 
studies, identifies, and evaluates computer vision 
techniques and datasets that will make it possible to create 
a system capable of recognizing and analyzing the most 
wasted food in an institutional canteen. This system will 
have the potential to support process optimization and 
promote conscious practices. Furthermore, it may assist in 
the decision-making process, contributing to more 
efficient management and a consequent reduction in food 
waste. This study also raises open questions and research 
directions for the field. 

Food Waste 
Food waste manifests itself as a decrease in edible 

food mass at the end of the food supply chain, 
predominantly at the retail and final consumption stages. 
It is largely influenced by the behavior of retailers and 
consumers. Approximately one-third of the food 
produced for human consumption, which equates to 
around 1.3 billion tons per year, is lost or wasted 
worldwide (Gustavsson et al., 2011). The importance of 
reducing food waste is clear and defined as a target in 
the SDGs in goal 12, target 12.3: "By 2030, halve per 
capita food waste globally, at both retailer and consumer 
levels and reduce food waste along production and 

supply chains, including post-harvest" (Kateřina and 
Adriana, 2023). 

Minimizing food loss and waste is crucial for 
economic and environmental sustainability. It has a direct 
impact on food security, nutrition, and several SDGs. For 
example, reducing food waste affects the SDGs on 
hunger, the environment, poverty, economic growth, and 
inequality (Food and Agriculture Organization of the 
United Nations, 2019). Progress on other SDGs, such as 
gender equality and clean energy, can, in turn, help reduce 
food waste (Food and Agriculture Organization of the 
United Nations, 2019). Figure (1) illustrates the 
interconnection between reducing food waste and various 
SDGs, highlighting the wider implications for 
sustainability and human well-being. 

Food Waste in Numbers 
According to Eurostat (2023) statistics and as can be 

seen in Fig. (2), in 2021, around 131 kilograms (kg) of 
food waste per inhabitant were generated in the European 
Union (EU). Restaurants and catering services, which 
include institutional canteens, were responsible for 12 kg 
of food waste per person (9%) (Union, 2023b). 

According to the Instituto Nacional de Estatística 
(2022), food waste in Portugal reached 183.5 kg per 
inhabitant in 2020, corresponding to 1.9 million tons. 
Restaurants and similar services were responsible for 13% 
of this waste, as can be seen in Fig. (3). 
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Fig. 1: Food loss and waste and the sustainable development goals. Source: Food and Agriculture Organization of the United 
Nations (2019) 

  
Fig. 2: Food waste in kg per inhabitant in the European Union by 

main economic sectors. Adapted from: Union (2023a) 
 

  
Fig. 3: Food waste generated in 2020 in Portugal. Adapted from 

Correia et al. (2022) 
 
Cost of Food Waste 

The Food and Agricultural Organization of the United 
Nations (FAO) and the World Bank are warning about the 
economic impact of food waste (Gustavsson et al., 2011). 
The FAO states (Gustavsson et al., 2011) that the food 
intended for human consumption that is lost or wasted 
every year translates into a cost of 680 billion dollars in 
developed countries and 310 billion dollars in developing 
countries. At the same time, the World Bank estimates the 
global economic impact of food loss and waste to be 
around 940 billion dollars worldwide (Gustavsson et al., 
2011). In the EU, according to an estimate in a 2016 report 
(Stenmarck et al., 2016), the cost of food waste in 2012 
was 143 billion euros. 

The Fig. (4) shows the costs of food waste by sector per 
year. These numbers underline the profound financial impact 
of inefficiencies along the food supply chain, affecting 
economies on a global scale. Reducing food waste is, 
therefore, not only an environmental imperative but also a 
crucial strategy for minimizing economic losses, promoting 

financial sustainability, and strengthening global economic 
resilience (Gustavsson et al., 2011). 

  
Fig. 4: Cost of food waste in billions of euros by sector per year. 

Adapted from: Urry (2023) 
 
How to Reduce/Prevent Food Waste 

Throughout the food supply chain, there are various 
forms of food waste. Figure (5) details these different forms.  

In order to reduce and prevent food waste, the EU has 
established important initiatives, including the EU platform 
on food losses and food waste (Commission, 2023a) and the 
EU food loss and waste prevention hub (Commission, 
2023b), which serve as facilitating channels for the effective 
sharing of good practices, resources, and knowledge. There 
was also funding available to boost concrete food waste 
prevention actions, such as €2,250,000 in support for the 
hotel and restaurant sector in 2022. This funding was 
intended to improve the measurement of food waste and help 
implement food waste prevention measures in the operations 
of the organizations, as can be seen in the initiative entitled 
"grants for stakeholders to improve measurement of food 
waste and help implement food waste prevention in their 
operations and organizations" (Health and Agency, 2024). 
Member States are encouraged to run consumer campaigns, 
integrate food waste prevention into school curricula, and 
facilitate food donations through legislative measures. The 
citizens' panel (Commission, 2023c) recommendations serve 
as a guide, and the document provides quick tips for 
individuals to reduce food waste. By implementing these 
measures, the EU aims to empower citizens to actively 
participate in reducing food waste and promote significant 
changes in consumption habits (Commission, 2023c). 

Mitigating food waste requires a comprehensive 
approach, integrating various measures and strategies. 
Examples of crucial initiatives include information, 
awareness, and communication campaigns aimed at 
educating the population about efficient food storage, 
preparation, and use practices. The implementation of 
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educational programs proves to be effective in promoting 
more conscious household practices, highlighting the 
importance of portion control and the use of smaller plates 
(Wansink and van Ittersum, 2013). 

  
Fig. 5: Factors that result in food waste and losses along the 

food chain. Adapted from: Storup (2016) 
 

The theory of social influence has emerged as a 
valuable tool, as evidenced by the positive impact, for 
example, of messages in university canteens (Stöckli et al., 
2018). Psychosocial approaches are essential for changing 
behaviors related to food waste. Promoting training and 
qualifications, combined with boosting innovation and 
technological development, appears to be a promising 
strategy (Gabinete de Planeamento Politicas e 
Administração Geral, “National Strategy and Action Plan 
to Combat Food Waste, 2017). 

Therefore, the prevention and effective reduction of 
food waste requires cooperation between sectors, the 
education of society, and the integration of innovative 
technologies, all of which play interdependent roles in 
building a more sustainable future (Stöckli et al., 2018; 
Gabinete de Planeamento Politicas e Administração 
Geral, “National Strategy and Action Plan to Combat 
Food Waste, 2017). 

Technologies to Fight Food Waste 
Information and communication technologies have an 

important contribution to make in the fight against food 
waste. Technology plays a central role in addressing this 
complex challenge, as evidenced by the essential 
collaboration between food service companies and 
technology providers. Technological advances, including 
applications and data provided by these partners, provide 
valuable information to food service companies, allowing for 
more efficient waste management (Martin-Rios et al., 2020). 

The potential of Artificial Intelligence (AI) to fight 
food waste and promote a more efficient circular economy 
is well recognized (Onyeaka et al., 2023). The application 
of AI can trigger more efficient processes, provide for 
better informed decision-making, and promote innovative 
solutions to the challenges facing the global food system. 

Monitoring and optimizing food production (Sebastian et al., 
2023), redistributing surpluses to those in need 
(Onyeaka et al., 2023), and supporting waste reduction 
efforts (Fang et al., 2023) are specific areas where AI can 
play a crucial role. 

In addition, the importance of technology in reducing 
food waste also manifests itself in improving food 
production and increasing efficiency, controlling food 
quality, and automating activities such as inventory 
management, order fulfillment, and delivery. Technologies 
such as Machine Learning (ML) make it possible to identify 
trends (Merdas and Mousa, 2023), personalize menus 
(Naik, 2020), optimize packaging and storage (Wang et al., 
2023) and detect food safety risks (Wang et al., 2022). 

The implementation of automated sorting and grading 
systems that use image recognition to evaluate fruits and 
vegetables is indeed a promising strategy for reducing 
food waste. In the context of image recognition, 
Convolutional Neural Networks (CNNs) can be used to 
automate the process of inspecting the quality of products 
such as cereals, fruits, and vegetables, enabling the rapid 
and accurate identification of defects and quality 
problems, thus reducing waste caused by human errors 
and recalls. In addition, the use of CNNs in image 
recognition systems helps to optimize the efficiency of the 
supply chain, directing products to appropriate 
destinations based on their condition, thus preventing 
unsuitable products from reaching consumers. Therefore, 
the integration of CNNs into automated sorting and 
grading systems using image recognition technology 
aligns with the strategy of reducing food waste by 
detecting and classifying defects, ultimately also 
contributing to extending the shelf life and improving the 
quality of agricultural products (Onyeaka et al., 2023). 

The application of ML is not just limited to detecting 
defects and contamination but also to analyzing customer 
feedback. This analysis makes it possible to assess the 
impact of various packaging and preservation techniques, 
providing companies with valuable information to 
optimize their processes and, consequently, reduce food 
waste (Onyeaka et al., 2023). 

Another significant contribution of ML lies in the 
optimization of supply chain management. ML, including 
computer vision applications, enables more efficient 
inventory management, helping companies to reduce 
operating costs while improving the efficiency of logistics 
processes (Praveen et al., 2020). Computer vision can be 
harnessed to develop automated food recognition systems 
capable of identifying food-related objects and 
ingredients (Pandey et al., 2023). 

In addition to these advances, specific technologies are 
highlighted in the fight against food waste, such as the 
automatic classification of food waste. For example, Kitro 
(2024) uses ML to accurately quantify and categorize food 
waste. Winnow (2024) has developed a smart meter 
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technology connected to food waste containers, which 
enables efficient measurement and tracking of waste in 
commercial kitchens. Orbisk (2024) uses computer vision 
and an AI data logging terminal to monitor and analyze 
food waste in commercial kitchens, especially in food-to-
order establishments. In addition, some solutions integrate 
data network connectivity with waste disposal machines 
(Martin-Rios et al., 2020), such as smart containers that can 
communicate with other devices or systems, like the 
devices used by waste management workers, to provide 
information on the status of the containers (Czekała et al., 
2023). This integration allows for real-time monitoring and 
data sharing, contributing to more efficient waste 
management practices. 

Thus, the combination of these technologies allows for a 
comprehensive and innovative approach to minimizing food 
waste, from production to waste disposal, with growing 
relevance in promoting sustainable practices in food 
management (Martin-Rios et al., 2020; Onyeaka et al., 2023; 
Pandey et al., 2023). 

State of the Art 
This section presents state of the art from previous 

research, analyzing scientific articles that contain 
information related to the technologies and techniques 
used for detecting and accounting for food waste and for 
recognizing and classifying food in images. 

The Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) methodology 
was used to review the scientific articles. According to 
(Prisma, 2023), this methodology focuses mainly on 
reporting reviews that evaluate the effects of 
interventions, but it can also be used as a basis for 
reporting systematic reviews with objectives other than 
evaluating interventions. 

Approaches to Food Waste in Different Sectors  
By analyzing Fig. (3), it was decided that the food 

waste sectors to be analyzed in this document would be 
"Households", "Retail and distribution", "Restaurants and 
food services", and "Food production". Figure (3) also 
shows another sector, "Primary production". However, 
after carrying out the research adapted to each sector, it 
was decided not to include it. After applying all the filters, 
only one article remained that was not aligned with the 
parameters we had been looking for. 

It should be noted that the search strategy was 
conducted using a query based on research questions, 
considering the keywords related to the topic of the work 
and the technologies that are expected to be used. The 
research questions that should be answered are: 
 

1. How does artificial intelligence contribute to 
reducing food waste in various sectors such as retail, 
food distribution, and restaurants? 

2. What roles do convolutional neural networks and 
deep learning play in food waste reduction? 

3. How effective is computer vision in food recognition 
and classification for minimizing waste in food 
production and services? 

Query (main): 
 

"Food waste", and ("Food recognition" or "Food 
segmentation" or "Food classification") and 
("Artificial intelligence", or "Convolutional 
neural networks" or "Deep learning",) and 
"Computer vision" and "Machine learning" 

 
Next, given that the search aimed to include various 

sectors of food waste, keywords related to each sector 
were added to the main query. In total, four queries were 
used. The search terms added were "retail"," "food 
distribution"," "food production"," "restaurants"," "food 
services"," "canteen"," "households", and "house"." In 
order to filter out the relevant studies, inclusion and 
exclusion criteria were defined for the state-of-the-art 
articles, which are shown in Table (1). 

The articles selected for a detailed analysis were 
chosen based on their title, abstracts, and conclusions. As 
expected, only articles that address pertinent topics related 
to the subject of this study were selected. The database 
used to carry out the research was B-On (B-On, 2023), as 
its use for queries offers several advantages, including 
access to reliable resources, constant updates, ease of 
navigation, and advanced search tools. This research was 
carried out in November 2023. Figure (6) shows the 
flowchart describing the various stages of searching for 
the articles to be studied as part of this study. 

Sectors of Food Waste 
This subsection describes the various studies that were 

identified in the previous stage and organized by sector. 

Households 
In Konstantakopoulos et al. (2024), a literature review 

study is presented, with an exhaustive evaluation of the 
methods and techniques applied to segment food images, 
classify their food content, and calculate volume. The 
study mentions datasets of food images that were used to 
evaluate automatic food recognition methods, including 
Food 101 (Bossard et al., 2014), UEC-Food 100 (Matsuda 
and Yanai, 2023), VIREO Food-172 (Chen and NGO, 
2023) and UEC-Food 256 (Kawano and Yanai, 2023). 
The methods studied were categorized into three groups: 
 
(i) Semi-automatic and automatic food image 

segmentation methods 
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(ii) Methods based on ML and traditional Learning and 
based on ML and Deep Learning (DL) for food 
image classification 

(iii) Food volume estimation methods use 3D 
reconstruction, pre-built shape models, perspective 
transformation, depth camera, and ML and DL 
methods. These methods were evaluated in terms of 
performance, and their strengths and limitations were 
analyzed. The study concluded that both CNNs and 
Deep Convolutional Neural Networks (DCNNs) 
have been widely used in food image recognition 
studies. And that the most widely used CNN models 
have been built specifically for each problem based 
on the Inception-V3 and deep food models 

 
In Kumar et al. (2022) an innovative model was 

presented for detecting and classifying fresh and damaged 
fruit using ML and DL techniques. The aim was to 
develop an intelligent fridge with as few sensors as 
possible to help reduce food waste, in this case, fruit. To 
this end, the use of CNNs to recognize images of fresh and 
damaged fruit was considered. YOLOv3, Faster R-CNN, 
and SSD were studied. In addition, the pre-trained models 
Inception-V3 and VGG16 were used to improve 
classification accuracy. The models were trained on a 
large dataset of fruit images. The accuracies for 
distinguishing between fresh and damaged fruit were 
evaluated. The authors concluded that Faster R-CNN 
outperformed YOLOv3 and SSD. The results showed that 
the Faster R-CNN model can correctly differentiate 
between fresh and damaged fruit. The Accuracy of this 
model was evaluated on a test dataset, and a mean 
Average Precision (mAP) score of 78.9% was achieved. 
 
Table 1: Criteria for inclusion and exclusion of articles 
Inclusion criteria Exclusion criteria 
Extracted from the B-On database 
Scientific in nature and validated by 
other researchers 
Uses computer vision techniques to 
classify and detect food in images 

Published in years prior to 2020. 
From websites and opinion articles 

 

 
 
Fig. 6: Flowchart of the research phases 
Retail and Distribution 

In Hosseinnia Shavaki and Ebrahimi Ghahnavieh 
(2023), a systematic literature review was carried out with 
the aim of investigating the application of DL models in 
operations and Supply Chain Management (SCM). The 
study covers 43 articles and presents the problems, the DL 
models adopted, and discusses the open points. It presents 
a list of DL models applied in the field of SCM and 
concludes that CNNs are the most widely used. CNN 
architectures have been used to solve SCM problems such 
as work forecasting, stock optimization, price forecasting, 
and fraud detection, among others. 

Restaurants and Food Services 
In Lubura et al. (2022), a CNN model was developed 

for recognizing and estimating food waste. The model 
was trained with 157 different food categories and 
achieved high Accuracy (over 98%) in classifying food 
images. For food recognition, two datasets were used: The 
UEC Food 100 (Matsuda and Yanai, 2023), with around 
15,000 images divided into 100 classes, and a proprietary 
dataset with images of the most common foods on the 
Serbian market, with a total of 23,552 images and 157 
classes. The proposed model was built using Keras 
(2023), an Application Programming Interface (API) for 
DL methods that use the Python programming language 
(Python, 2023). This model contains two convolutional 
layers, a fully connected layer and an output layer with 
157 neurons. The CNN model showed good predictive 
capabilities, obtaining an accuracy of 0.988 and a loss of 
0.102 after the network's training cycle. It was estimated 
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that the average food waste per meal for Serbian students 
was 21.3%. 

In Zahisham et al. (2020), a learning model was 
proposed using a DCNN to correctly distinguish foods 
and recognize them in different orientations. To this end, 
the ResNet50 model was trained with three datasets: 
ETHZ Food 101 (Bossard et al., 2014), UEC-Food 100 
(Matsuda and Yanai, 2023), and UEC-Food 256 (Kawano 
and Yanai, 2023). The results of the three trained models 
showed that high Accuracy was achieved in food 
recognition: 91.5% in ETHZ-FOOD101, 87.5% in UEC-
Food100, and 84.4% in UEC-Food 256. 

The study (Huang et al., 2021) focused on accurately 
and efficiently estimating the Carbon/Nitrogen (C/N) 
ratio of the organic fraction of municipal solid waste, a 
crucial factor in the context of automated composting 
control. To this end, the Mask R-CNN model used was 
trained with the organic waste-3 dataset (Sekar, 2023). 
This model is an extension of Faster R-CNN, also based 
on CNN architectures. To obtain the initial weights, the 
model was pre-trained with the COCO dataset (COCO, 
2024). This is a large-scale dataset made up of 91 common 
object classes. The results of the study demonstrate the 
effectiveness of the Mask R-CNN model, which was 
tested on three different types of organic waste: Lettuce, 
steamed rice, and bananas. Regression analyses revealed 
strong linear correlations between the ground truth and the 
measured volumes of banana (R2 = 0.985), lettuce (R2 = 
0.955), and rice (R2 = 0.970). 

Food Production 
The study presented by (Sood and Singh, 2021) focused 

on the challenges of limited food production, declining 
quality, waste, and loss of food products in the field of food 
production and agriculture. The authors presented an 
analysis of statistical and computer vision approaches used 
in food production and agriculture. They found that DL-
based approaches produce better results, specifically for 
image processing applications. They provided a list of 
publicly available datasets and models used in related 

studies. They concluded that the datasets Food-101 
(Bossard et al., 2014), UEC-Food256 (Kawano and Yanai, 
2023), and UEC Food 100 (Matsuda and Yanai, 2023) are 
the most used. The models mentioned in the study were not 
tested for performance. 

Table (2) presents a summary of the studies described 
above, in what is considered the most relevant aspects: Year 
of publication, architectures, models, and datasets used. 

Critical Analysis of Results 
The analysis of the researched papers allows for a 

conclusion on the suitability and potential of the different 
types of AI models, as well as on the datasets considered. 
As can be seen in Fig. (7), the neural network architecture 
most used in the studies was CNN, with a percentage of 
use of 62%. DCNN had a percentage of 38%. Although 
there are distinctions between CNNs and DCNNs, both 
can be within the same domain of architecture. CNNs 
represent a specific DL model widely used in image 
classification (Carvalho, 2023). DCNNs, while belonging 
to the above, are composed of multiple, fully connected 
layers and are commonly used to learn complex 
representations of input data, as well as speech 
recognition, natural language processing, and classification 
of data organized in tables (Chaudhari et al., 2023). 

An analysis of the datasets used in the articles studied 
shows that seven different datasets are referenced, as 
illustrated in Fig. (8). The datasets referred to in the 
articles are Food-101 (Bossard et al., 2014), UEC-Food 
256 (Kawano and Yanai, 2023), UEC Food 100 (Matsuda 
and Yanai, 2023), OrganicWaste-3 (Sekar, 2023), COCO. 
(2024) and VIREO Food-172 (Chen and NGO, 2023). In 
the analysis carried out, it was noted that one of the studies 
did not provide information on the dataset used and, 
therefore, appears in the graph as Not Applicable (N/A). 
Some of the studies have built and used their own dataset. 
Figure (8) shows that the most used dataset was UEC-
Food 100. On consulting the documentation (Matsuda and 
Yanai, 2023), it was noted that this is a dataset composed 
of images of mostly Japanese food. 

 
Table 2: Summary of the scientific articles studied 
Reference Article/Study Year of publication Architecture (s) Model (s) Dataset (s) 

Konstantakopoul et al. (2023) 

A review of image-based 
food recognition and volume 
estimation artificial 
intelligence systems 

2023 CNN, DCNN 

The model 
proposed by the 
authors based on 
Inception V3, deep 
food 

Food-101, UEC 
Food 100, VIREO 
Food 172, UEC Food 
256 

Kumar et al. (2022) A novel model to detect 2022 CNN Faster RCNN Own 
 Classify fresh and 

damaged fruits to reduce 
food waste using a deep-
learning technique 

  Incept ionV3, 
VGG16 

 

Hosseinnia Shavaki and 
Ebrahimi Ghahnavieh (2023) 

Applications of deep 
Learning into supply chain 
management: A systematic 
literature review and a 
framework for future 
research 

2023 CNN N/A N/A 
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Lubura et al. (2022) 

Food recognition and food 
waste estimation using 
convolutional neural 
network 

2022 CNN 
The model 
proposed by the 
authors 

Own, UEC Food100 

Zahisham et al. (2020) Food recognition with 
ResNet50 2020 DCNN ResNet-50 

Food-101, UEC 
Food 100, UEC Food 
256 

Huang et al. (2021) 

Method for C/N ratio 
estimation using Mask 
RCNN and a depth camera 
for the organic fraction of 
municipal solid wastes 

2021 CNN Mask RCNN Organic Waste-3, 
COCO 

Sood and Singh (2021) 
Computer Vision and ML-
based Approaches for Food 
Security: A review 

2021 DCNN N/A 
Food 101, UEC Food 
100, 
UEC Food 256 

The 2nd and 3rd most studied datasets were Food-101 
and UEC-Food 256. UEC-Food 256 is also composed 
of images mainly of Japanese food, as it is a similar 
dataset to the previous one, differing only in the 
number of classes it contains. Food-101 stands out, 
with 101 different classes of food from a wide variety 
of cultures, Japanese food is not predominant. 
 

  
Fig. 7: Neural network architectures used in the articles 
 

  
Fig. 8: Datasets used in state-of-the-art articles 
 

  
Fig. 9: Computer vision models used in state-of-the-art articles 

 
 
Fig. 10: AI, ML, and DL hierarchy. Adapted from: Alzubaidi et al. 

(2021) 
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Fig. 11: Typical architecture of a CNN. Adapted from: Géron 

(2022) 
 

Likewise, an analysis was carried out to see which 
CNN and DCNN models were considered in the studies 
analyzed in the state-of-the-art. Figure (9) shows the 
seven models mentioned in the different articles, namely: 
Faster R-CNN, Inception V3, VGG16, Deep Food, 
ResNet-50 and Mask R-CNN. In addition to these, one of 
the articles did not clarify which model was used. There 
are also other studies that have developed their own model 
based on existing ones. They are represented in the graph 
as "Model Proposed". Figure (9) allows us to conclude 
that the most widely used model was Inception-V3, which 
was developed for computer vision tasks, particularly for 
classifying objects in images. 

Ultimately, there are articles on the subject that are the 
focus of this study. However, several of these articles lack 
substantial results or omit details about the models 
adopted. Regarding the articles that have been analyzed, 
there are various types of models and architectures that 
can be applied in the context of classifying and detecting 
food in images. Thus, it can be concluded that InceptionV3 
is the most widely used model. So, its performance should be 
studied and evaluated. The same applies to the ResNet-50 
model described in (Zahisham et al., 2020), which is 
relevant to the "Restaurants and food services" sector. 
Thus, the performance of these models will be evaluated 
in the context of this study to conclude on their suitability 
for the task of classifying food in images. 

Computer Vision Techniques 
Computer vision techniques refer to the methods and 

algorithms used to enable machines to interpret and 
understand visual data from the world around them 
(Shorten and Khoshgoftaar, 2019). These techniques 
include image processing, pattern recognition, ML, DL, 
and AI. They are used to analyze and extract information 
from images and videos, such as object detection, 
segmentation, tracking, and recognition (Shorten and 
Khoshgoftaar, 2019). 

AI is a vast domain that encompasses many 
subdomains, including ML and DL, as illustrated in 
Fig. (10). ML is a subset of AI that focuses on algorithms 
that can learn and make predictions based on data. DL is 
a subset of ML that uses neural networks with many layers 

to learn complex representations of data. One of the most 
popular types of neural networks used in DL is CNNs 
(Alzubaidi et al., 2021). This section aims to provide an 
understanding of some of the main concepts behind CNNs 
and of two specific CNN models, Inception-V3 and 
ResNet-50, which have been identified as the most 
prominent for the task of classifying food in images. 

Convolutional Neural Networks 
CNNs are a type of artificial neural network designed 

for processing grid-structured data such as images. They 
have been proven to be highly effective in computer 
vision tasks such as image classification, object detection, 
and image segmentation (Géron, 2022). 

Models based on CNNs are usually made up of 
convolution layers, pooling layers, and fully connected 
layers (Géron, 2022), which represent the presence of 
various features in the input image. Figure (11) illustrates 
an example of a CNN architecture for image 
classification. It starts with an input image that passes to 
the convolutional layer, which plays a crucial role in 
extracting features from images (Alzubaidi et al., 2021). 
This layer has a set of filters or kernels that can be trained. 
These are combined with the input image to generate 
feature maps. Each filter detects specific patterns in the 
image, such as edges, textures, or shapes. The output of 
the convolutional layer consists of a collection of feature 
maps (Maurício et al., 2023). 

The Rectified Linear Unit (ReLU) layer introduces 
non-linearity into the CNN architecture by applying the 
rectification function to the output of the previous layer. 
This non-linearity is crucial for the network to learn and 
perform more complex tasks. ReLU is an activation 
function commonly used in CNN architectures due to its 
simplicity and effectiveness in training deep neural 
networks (Alzubaidi et al., 2021). 

The pooling layer is responsible for reducing the 
sample size of the feature maps generated by the 
convolutional layers (Alzubaidi et al., 2021). It reduces 
the spatial dimensions of the feature maps while 
maintaining the essential information (Maurício et al., 
2023). Various pooling methods can be used, such as max 
pooling and average pooling (Alzubaidi et al., 2021). 
Pooling helps to control overfitting, reduce computational 
complexity, and maintain the dominant information in the 
feature maps (Maurício et al., 2023). 

The fully connected layer is responsible for creating 
high-level abstractions and the final classification in a 
CNN. It receives mid- and low-level features from the 
previous layers and connects each neuron to each neuron 
in the previous layer (Maurício et al., 2023). The flattened 
output of the previous layers is fed into these fully 
connected layers, allowing the network to learn complex 
relationships between features and make predictions 
(Alzubaidi et al., 2021). The fully connected final layer 
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produces an output that represents the predicted class 
probabilities for the input image, allowing the 
classification of the learned features into different classes 
(Maurício et al., 2023). 

Examples of CNN models are listed in Shorten and 
Khoshgoftaar (2019); Alzubaidi et al. (2021); Géron (2022) 
and include Alex Net (Krizhevsky et al., 2017), Network in 
Network (NIN) (Lin et al., 2013), Zf Net (Zeiler and Fergus, 
2014), Visual Geometry Group (VGG) (Simonyan and 
Zisserman, 2014), GoogLeNet (Szegedy et al., 2015) with 
its versions Inception V1, V2, V3 (Szegedy et al., 2016), 
V4 (Szegedy et al., 2017), Residual Network (Res Net) 
(He et al., 2016), Densely Connected Convolutional 
Network (Dense Net) (Huang et al., 2017), Xception 
(Chollet, 2017), Squeeze-and-Excitation Network (SE Net) 
(Hu et al., 2018), ResNeXt (Xie et al., 2017), MobileNet 
(Howard, 2017), Cross Stage Partial Network (CSPNet) 
(Wang et al., 2020) and EfficientNet (Tan and Le, 2019). 

Choosing the most suitable CNN model for a task 
involves careful consideration of several key factors 
(Alzubaidi et al., 2021). Firstly, it is necessary to assess 
the specific requirements of the task, such as image 
classification or object detection (Alzubaidi et al., 2021). 
Evaluating the performance of different models on 
reference datasets should consider factors such as model 
size, Accuracy, and speed on both the Central Process 
Unit (CPU) and the Graphics Processing Unit (GPU) 
(Maurício et al., 2023). It is important to consider the 
available computing resources, as some models can be 
computationally demanding (Géron, 2022). In addition, 
depending on the complexity of the task and the data set 
available, it is necessary to consider the depth (number of 
layers) and width (number of neurons in each layer) of the 
CNN architecture (Alzubaidi et al., 2021). Regularization 
techniques and optimization methods should be chosen 
based on the dataset and architecture. The potential 
benefits of transfer learning, where pre-trained CNN 
models are adjusted for the specific task at hand, should 
be evaluated (Géron, 2022). Finally, consider the 
interpretability of CNN models, especially if the task 
requires understanding the model's decision-making 
process (Alzubaidi et al., 2021; Géron, 2022). 

Based on the articles analyzed in section 3, it was 
concluded that the Inception-V3 (GoogLeNet) and 
ResNet-50 models would be the most promising to 
apply in the context of this study. The paper 
(Hosseinnia Shavaki and Ebrahimi Ghahnavieh, 2023) 
supports this assertion, pointing out that CNNs have 
shown significant success in identifying various types of 
food and estimating their nutritional values. CNN models 
such as VGG, GoogLeNet, and ResNet have been 
effectively applied to food image recognition. 

Inception-V3 and ResNet-50 
Inception-V3, which evolved from Inception-V1 and 

was introduced by GoogLeNet in 2014 (Géron, 2022), is 

a model that is part of the Inception family of CNNs. This 
model has a depth of 48 layers, exhibiting an error rate of 
3.57% in image classification tasks (Alzubaidi et al., 
2021). The input size for the images is 229×229×3. This 
means that the images have a resolution of 229 pixels 
wide by 229 pixels high and three-color channels (RGB) 
(Alzubaidi et al., 2021). This model was designed to 
address the challenges of efficiency, scalability, 
performance, and resource constraints in the context of 
CNNs for computer vision, focusing on parameter 
reduction through factorized convolutions, regularization, 
and batch normalization (Szegedy et al., 2016). 

A distinctive feature of Inception networks is the 
repetition of blocks throughout the artificial neural network. 
This consists of stacking Inception modules, with each 
module containing several repeated blocks. These blocks 
have the function of extracting characteristics from the input 
images, contributing to the network's effectiveness in 
classifying images (Andrew and Santoso, 2022). 

Figure (12) shows an example of an Inception-V3 
model. It starts with factored convolutions, which are used 
to reduce the number of parameters in the network. This 
involves splitting traditional convolutions into smaller 
convolutions. For example, the traditional 7'7 convolution 
is factorized into three 3'3 convolutions (Szegedy et al., 
2016). Pooling layers are applied to reduce the sampling 
of the feature maps and their dimensionality (Andrew and 
Santoso, 2022). Inception modules are designed to 
efficiently capture features at various scales and 
complexities. These modules are composed of parallel 
branches that incorporate convolutions with various filter 
sizes, pooling operations, and the factorization of 
convolutions to process feature maps efficiently. This design 
highlights the reduction in the size of the grids between the 
Inception modules while maintaining the dimensions of the 
feature maps. The concatenation of filters in the modules 
makes it possible to combine features extracted from 
different convolutional branches, enriching the 
representation of the features (Szegedy et al., 2016). The 
fully connected layers play a crucial role in the final 
classification phase of the model. After passing through the 
last Inception module, the output is subjected to global 
average pooling to calculate the spatial average of the feature 
maps (Andrew and Santoso, 2022). 

In Fig. (12), the fully connected layers are composed 
of a flattened layer, which is responsible for converting 
the output of the previous layer into a one-dimensional 
tensor, preparing it to be processed by the dense layer. The 
dense layer applies a linear transformation to the input 
data. Each neuron in this layer is connected to all the 
neurons in the previous layer, ensuring a total connection. 
Finally, the softmax activation function, often used in the 
output layer for multiclass classification, normalizes the 
original outputs into a distribution of probabilities in 
different classes (Shazia et al., 2021). 
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The ResNet models (He et al., 2016), developed in 2015, 
are known for their ability to train very deep neural networks 
using skip connections, also known as shortcut connections 
(Géron, 2022). ResNet-50, a variant of the ResNet model, 
has a depth of 50 layers (Andrew and Santoso, 2022). It has 
an error rate of 6.71% (Top-5 Error Rate) and accepts images 
with an input size of 224'224 (He et al., 2016). 

The components of this model include residual blocks. 
Each residual block consists of convolutional layers, batch 
normalization, activation functions (e.g., ReLU), and jump 
links (He et al., 2016). The convolutional layers, which 
include 1'1, 3'3, and 1'1 convolutions, are responsible for 
extracting features from the input data at various spatial 
scales and depths within the network (He et al., 2016). Batch 
normalization is used to normalize the activations of each 
layer, which helps stabilize and accelerate the formation of 
deep neural networks (He et al., 2016). ReLU activation 
functions are used to allow the network to learn complex 
representations from input data (He et al., 2016). The jump 
connections allow the gradient (variation of the adjustment 
to be applied to each weight, with a view to minimizing the 
network's error (Ferreira et al., 2022) to fluctuate more 
efficiently during training, providing alternative paths for the 
propagation of the gradient (He et al., 2016). ResNet-50 also 
uses pooling and fully connected layers to achieve accurate 
classification in image recognition tasks (Andrew and 
Santoso, 2022). Figure (13) shows an example of a ResNet-
50 model. 
 

  
Fig. 12: Diagram of the Inception V3 model. Adapted from 

Shazia et al. (2021) 

 
 
Fig. 13: Diagram of the ResNet-50 model. Adapted from 

Shazia et al. (2021) 
 
Performance Evaluation 

The research carried out in this project addresses the 
challenge of contributing to reducing food waste in an 
institutional canteen. So, it will be relevant to detect food 
served that is left on plates after the meal has been 
consumed (i.e., scraps). The findings from the related 
work presented above highlight Inception-V3 and 
ResNet-50 as the most promising models for classifying 

and detecting food in images. Therefore, it is interesting 
to compare their performance. In this section, the dataset 
chosen for use in the tests is described first. Then, the 
scenarios for implementing the models are presented, as 
well as the performance metrics. Finally, the results of the 
tests carried out are discussed. 

Dataset 
As the dataset has an extensive list of classes, just a 

few random images of the classes are exemplified. The 
Fig. (14) shows some of the images in the dataset duly 
captioned with the class to which they belong. 

Based on the conclusions from the state-of-the-art 
review, the most suitable dataset for testing the models is 
Food-101 (Bossard et al., 2014). This public dataset is 
made up of food images organized into 101 classes of 
food types. Each class contains 1,000 images, making a 
total of 101,000 images (Bossard et al., 2014). The images 
in this dataset have already been properly classified. In 
addition to the images, the dataset folder provides 
information in text files about the labels and the classes to 
which they belong. Table (3) lists the 101 classes that 
make up the dataset. 

The images for training and testing are divided 
immediately after downloading the dataset in both trained 
models. 75% of the images were used for training, and the 
remaining 25% for testing. Dividing the dataset, as 
previously mentioned, leaves a total of 75750 images for 
training and the remaining 25250 for testing. 

Performance Metrics 
The performance metrics applied to evaluate the 

models in the tasks of classifying food in images were 
Accuracy and loss. Each model was trained for a specific 
number of epochs. The decision to stop training the 
models is made taking several factors into account. When 
it is detected that the model's performance on the set of 
test images is no longer improving or is getting worse, 
training should be stopped. This approach avoids 
overfitting the model on the dataset and ensures good 
performance on new images (Prechelt, 1998). Both 
models had their training interrupted when they showed 
signs of stagnation in the performance metrics. ResNet-50 
was trained for 42 epochs, while Inception-V3 was trained 
for 32 epochs. 

Accuracy represents the proportion of correct 
predictions in relation to the total number of examples 
(Developers, 2024). The formula for calculating Accuracy 
is shown in Eq. (1). Accuracy can be calculated in both 
the training and testing phases. When it is calculated 
during training, it means that the model has correctly 
classified a percentage of the predictions in the training 
set. While test accuracy, i.e., the Accuracy calculated on 
the test set, means that the model is correctly classifying 
a percentage of the images in the dataset (Lehn, 2024): 
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Loss is an ML model performance metric that can be 

used on both training and test data. When it is calculated 
during the training process, it reflects how the model is 
adapting to the dataset. It should decrease as the epochs 
progress. However, a very low loss does not necessarily 
mean that the model will perform well on new data, as it 
may have adjusted too much to the training data. In the 
classification models whose performance was evaluated, 
the loss function used to calculate the loss value was the 
cross-entropy loss (also known as logarithmic loss or 
logistic loss) (Vijay, 2024). Equation (2) shows the 
formula for calculating the cross-entropy loss: 
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Fig. 14: Examples of images from 15 classes of the food-101 

dataset 
The loss calculated during training means that the 

model, on average, has an error relative to the training 
data. Whereas the loss calculated during testing, i.e., when 
the model was tested with images from the test set, on 
average made an error relative to that data. 

Implementation Scenario 
To evaluate the performance of the ResNet-50 model, 

a notebook available on GitHub (Herick-Asmani, 2023) 
with Python code was used to download the Food-101 
dataset and to train that model. Google Colab platform 
(Google, 2023) was used to train the model. This platform 
offers free hardware resources, such as GPUs and Sensory 
Processing Units (TPU), support for various languages, 
and integration with Google Drive and GitHub. The 
machine provided by the platform in the free plan has the 
following characteristics: NVIDIA T4 graphics card with 
16 GB of VRAM and 13 GB of RAM for the system. 

The trial environment was run on a machine with an 
Intel Core i7-1165G7 processor, 16.0 GB of RAM, and 
integrated Intel Iris Xe Graphics. To carry out the trials, 
code was implemented in Python, using PyTorch libraries 
(PyTorch, 2023), just like the notebook used to train the 
ResNet-50 model. 

This trial code makes it possible to use the trained 
model file extracted from the notebook. To do this, the 
corresponding checkpoint file must be provided. In 
addition, an image must be included as an input for 
classification, from which the code generates an output. 
The output consists of a string representing the name of 
the class that the model assigns to the image, together with 
the hit probability. 

The evaluation process for the Inception-V3 model 
followed a similar methodology. A notebook is available 
on GitHub (Kappa, 2024) was used, containing Python 
code that allowed downloading the Food-101 dataset and 
training the pre-existing implementation of the Inception-
V3 model. The platform used was once again Google 
Colab (Google, 2023), and the technical characteristics 
for training this model were described above. 

The trial for the Inception-V3 model was also carried 
out on Google Colab, taking advantage of the existing 
implementation on the notebook. The Tensor Flow library 
(Campesato, 2019) was used to train the model. The best 
model was then extracted after training to make 
predictions, and two images were used as input for testing. 
The code returns the image duly identified with the class 
that the model predicted. 

Results and Discussion 
The process of training the ResNet-50 model took a 

long time, and it was difficult to meet the time limit for 
using the free resources provided. Given that the maximum 
usage time is 4-6 h, training had to be carried out in several 
phases. Each epoch took approximately 45 min to train, and 
the model was trained for 42 epochs. Whenever the 
execution time ran out, it was necessary to save the file of 
the model trained so far and start training again from that 
point when resources were made available again. 

Figure (15) shows a training loss of 0.5944, which 
means that during training, the model had an average error 
of 59.44%. The training accuracy shows that the model 
made 83.77% of the predictions in the training set. The test 
loss indicated that the model was, on average, making an 
error of 0.5303. Finally, the test accuracy value was 0.8627, 
which means that the model correctly classifies 
approximately 86.27% of the images in this dataset. 

Figure (16) shows a graph comparing training loss and 
test loss. It can be concluded that over the course of 
training the model, there was a positive trend in the 
training loss and test loss curves. As the epochs increased, 
there was a consistent reduction in both training loss and 
test loss. This shows that the model is learning effectively 
on the training images and, similarly, on the test images. 

apple_pie
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baklava

beef_carpaccio

beef_tartare

beet_salad
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bibimbap
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As training was carried out in phases, for the reasons 
explained above, this means that in some epochs, it is 
necessary to use the model trained in the previous epoch 
and start training again from there. In Fig. (16), it can be 
observed that between epochs 17 and 18, there was a sharp 

drop in both metrics. This happens for the reason 
explained above: The model trained in epoch 17 ended up 
with a training loss of 2.4298, and when it was restarted 
in the following epoch, it dropped to 1.6715. 

 
Table 3: Food-101 dataset classes 
 Food-101 dataset classes 
Apple-pie baby-back-ribs baklava beef-
carpaccio beef-tartare beet-salad 

edamame eggs-benedict escargots falafel 
filet-mignon fish-and-chips 

Omelette onion rings oysters’ pad-thai 
paella pancakes 

Beignets bibimbap bread pudding 
breakfast-burrito bruschetta Caesar-salad 
cannoli caprese-salad carrot cake ceviche 
cheese plate cheesecake chicken curry 
chicken quesadilla chicken wings 
chocolate cake chocolate mousse churros 
clam-chowder club-sandwich crab-cakes 
crème-brulee croque-madame cupcakes 
deviled eggs donuts dumplings 

Foie-gras french-fries French-onion-soup 
French-toast fried-calamari fried-rice 
frozen-yogurt garlic-bread gnocchi 
Greek-salad grilled-cheese-sandwich 
grilled salmon guacamole gyoza 
hamburger hot-and-sour-soup hot-dog 
huevos-rancheros hummus ice-cream 
lasagna lobster-bisque lobster-roll-
sandwich macaroni-and-cheese macarons 
miso-soup mussel’s nachos 

Panna-cotta Peking-duck pho pizza pork-
chop poutine prime-rib pulled-pork-
sandwich ramen ravioli red-velvet-cake 
risotto samosa sashimi scallops seaweed-
salad shrimp-and-grits spaghetti-bolognese 
spaghetti-carbonara spring rolls steak 
strawberry-shortcake sushi tacos takoyaki 
tiramisu tuna-tartare waffles 

  
Fig. 15: Results of the metrics in epoch 42 of the ResNet-50 model 
 

  
Fig. 16: Results of the ResNet-50 training process for the 

training loss and test loss metrics 
 

  
Fig. 17: Results of the ResNet-50 training process for the 

training accuracy and test accuracy metrics 

 
It can also be seen from Figs. (16-17) from epoch 40 

onwards, the decrease in loss and the increase in Accuracy 
were not significant. For this reason, it was decided to 
finish training the model in epoch 42. In this way, it is 
possible to prevent the model from overfitting, i.e., its 
tendency to adapt too much to the training images. 

Figure (17) shows a graph comparing training 
accuracy and test accuracy. Over the epochs, there is a 
consistent evolution in both training accuracy and test 
accuracy. This indicates a constant improvement in the 
model's performance with the training data, as well as a 
corresponding ability to efficiently apply the knowledge 
acquired to new test data. This positive trend suggests 
robust and progressive Learning, contributing to 
confidence in the model's ability to make accurate 
predictions. As in the previous Fig. (16), the same thing 
happens with the accuracy values in epoch 17. The values 
improved substantially in the following epoch because the 
training was done in stages. 

In addition to presenting the training results, trials 
were carried out to confirm the model's effectiveness. 
Figure (18) shows an example of a test carried out on an 
image of risotto, which is one of the classes included in 
the dataset. The trained ResNet-50 model correctly 
identified it with a percentage of 99.76%. 

Figure (19) shows another example of a trial carried 
out on a pasta image, which is not a class included in the 
dataset. The result was "spaghetti_bolognese", with a hit 
percentage of 61.98%. This means that it didn't get the 
classification completely right since the dataset doesn't 
contain this class. 

In the Inception-V3 model, the training process also took 
a long time, around 30 min per epoch. There was also the 
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challenge of using the platform for a period (as with the 
ResNet-50 model). The resources are free, but they are 
limited in the time they can be used. As the dataset used has 
101,000 images, both models take time to train, so on 
average, it is only possible to train 10 epochs per time of use. 
 

 
 
Fig. 18: Image of risotto (class included in the dataset) classified 
with Resnet-50 
 

  
Fig. 19: Image of pasta (class not included in the dataset) 

classified with Resnet-50 
 

  
Fig. 20: Results of the metrics in epoch 28 of the InceptionV3 

model 
The Inception-V3 model was trained for 32 epochs. 

However, the model with the best results was the one 
corresponding to epoch 28. The results shown in Fig. (20) 
reveal a training loss of 0.7534, indicating that, on average, 
the model had an error of 75.34% during training. The 
training accuracy metric revealed that the model was correct 
in approximately 86.04% of the predictions in the training 
set. In terms of test loss, the model showed an average error 
of 1.1777 when tested with images from the test set. Finally, 
test accuracy revealed an accuracy of 79.21%, which 
indicates that the model correctly classifies around 79.21% 
of the images in the test set. 

The Figs. (21-22) show graphs comparing the loss in 
the training and testing processes and the Accuracy in the 
same processes. The graph in Fig. (21) shows that there 
are variations in test loss between some epochs, while 
training loss shows a more stable curve. This indicates 
that as the model was trained, the loss decreased steadily. 
It can be seen in Figs. (21-22), test loss did not decrease, 
test accuracy did not increase, and test accuracy did not 
change significantly from epoch 28 onwards. Therefore, 
the model was no longer trained to avoid overfitting. 

Regarding accuracy in both the training and testing 
process, Fig. (22) shows a steady increase in training 
accuracy. However, there are visible variations in the 
evolution of test accuracy. These variations may be 
because training must be carried out in phases. As a result, 
the loss in the following epoch may vary from the 
previous epoch. 

Trials were also conducted to confirm the effectiveness 
of Inception-V3, using the same images used to assess the 
previous model. Figure (23) shows an example of a test on 
an image of risotto, which is one of the classes included in 
the dataset. Inception-V3 predicted the correct class. 
 

 
 
Fig. 21: Results of the inception-V3 training process for the 

training loss and test loss metrics 
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Fig. 22: Results of the inception-V3 training process for the 

training accuracy and test accuracy metrics 
 

 
 
Fig. 23: Image of risotto (class included in the dataset) classified 

with inception-V3 
 

 
 
Fig. 24: Image of pasta (class not included in the dataset) 

classified with inception-V3 
 

In conclusion, it can be said that both models correctly 
identified the foods in the images whose classes exist in the 

dataset. In classes that are not present in the dataset, the 
predictions were different. The most suitable model to use 
in future work is the one with the highest test accuracy. The 
experiments that were conducted showed that the best 
results were obtained using the ResNet-50 model. 

In the example shown in Fig. (24), an image was 
submitted as an input whose food should be identified as 
pasta. However, as with the previous model, the 
prediction was wrong. The prediction made by the 
Inception-V3 is the class “seaweed-salad”. A possible 
reason for the model not classifying the image correctly is 
that the pasta class does not exist in the dataset, so it would 
not be possible to identify it. 

Conclusion 
Combating food waste is not just a choice; it is a moral 

obligation and a race against the clock, where every meal 
saved contributes to overcoming significant challenges 
with profound economic, environmental, and social 
implications. Recognizing the urgency of addressing 
these issues is crucial, especially given the considerable 
loss of food along the supply chain, accentuated by the 
behaviors adopted by retailers and consumers. The use of 
information technologies, such as computer vision and 
artificial intelligence, shows promise in identifying and 
analyzing patterns that can direct strategies to effectively 
reduce these losses. 

The main contributions of this study are: 
 
1) A clear definition of the problem related to food 

waste and an analysis of how computer vision 
technologies can help to minimize this issue 

2) A review of the state-of-the-art and related works 
3) The identification of the most promising computer 

vision techniques, namely Inception-V3 and ResNet-
50, together with the Food-101 dataset 

4) A performance evaluation to compare Inception-V3 
and ResNet-50 

 
The performance evaluation of the Inception-V3 and 

ResNet-50 models revealed several challenges that will 
have to be addressed in future work. One of the most 
important is the inadequacy of the dataset used in the 
context of Portuguese gastronomy. This obstacle is 
particularly relevant since the application scenario is an 
institutional canteen, where the dishes served are typical 
of Portuguese meals and simpler than the food categories 
found in the dataset used. This could compromise the 
effectiveness of the classification model. Therefore, it will 
be necessary to improve and complement the dataset or 
even create a new one. It may also be necessary to 
evaluate other CNN models using that dataset. 

In the scope of future work, it is planned to develop a 
prototype with a targeted Technology Readiness Level 
(TRL) of 3-5 (TRL 3-experimental proof of concept, TRL 
5-technology validated in a relevant environment, 
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industrially relevant in the case of key enabling 
technologies). This solution can be expanded and 
implemented in various institutional canteen settings, 
addressing food waste challenges in these environments. 

During the implementation of the prototype, other 
challenges may arise related to adapting computer vision 
techniques to the specific characteristics of the food and 
environments found in an institutional canteen. These 
particularities may include variations in lighting, the 
arrangement of food on trays, variations in the presentation 
style of dishes, and other specific characteristics of the 
canteen environment. Other challenges that may arise in the 
future implementation of the prototype concern the hardware 
to be used to ensure that the proposed solution is viable, 
effective, and efficient. Integrating the computer vision 
system with other existing technologies or processes in the 
canteen is also a challenge. It would be desirable to have a 
cohesive and harmonious solution that can be easily 
incorporated into the operational routine. In addition, other 
challenges are issues such as the speed of capturing the 
photos in the process of depositing the tray after consuming 
the meal, the resolution of the images, and the decision about 
computing in the cloud or on specialized local hardware. 
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