

© 2025 Alaa Najmi and Mohamed El-Dosuky. This open-access article is distributed under a Creative Commons Attribution

(CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Intelligent Software Testing for Test Case Analysis Framework

Using ChatGPT with Natural Language Processing and Deep

Learning Integration

1Alaa Najmi and 1,2Mohamed El-Dosuky

1Department of Computer Science, Arab East Colleges, Riyadh, Saudi Arabia
2Faculty of Computers and Information, Mansoura University, Egypt

Article history
Received: 11-10-2024

Revised: 30-11-2024
Accepted: 24-12-2024

Corresponding Author:
Mohamed El-Dosuky
Department of Computer
Science, Arab East Colleges,
Riyadh, Saudi Arabia
Email: maldosuky@arabeast.edu.sa

Abstract: Effective testing scenarios are necessary to guarantee the

dependability and Caliber of software. Conventional techniques for creating

these scenarios frequently involve a great deal of manual labor and might not

fully cover all software requirements. In order to improve the automation and

Caliber of software testing scenario development, this study investigates the

combination of Natural Language Processing (NLP) and Deep Learning

(DL) approaches with ChatGPT, an advanced language model by OpenAI.

The suggested method automatically creates a variety of thorough test cases

by utilizing ChatGPT's sophisticated natural language processing
capabilities. To evaluate the model's capacity to comprehend intricate

software requirements and generate pertinent situations, a comparison

between conventional scenario-generation techniques and those improved by

ChatGPT is carried out. The process is divided into four stages: Requirement

parsing, in which natural language software requirements are analyzed and

interpreted using NLP models; scenario generation, in which a transformer-

based model is used to generate testing scenarios that are logical and

appropriate for the environment. an automation pipeline that uses Hugging

Face Transformers and Python to speed up the scenario generating process

and evaluation metrics that evaluate the created scenarios according to

requirement coverage and relevance coherence. The effectiveness of this

method is illustrated through a case study on evaluating an Optical Character
Recognition (OCR) system for private documents. The results show that

integrating ChatGPT with NLP and DL greatly enhances the depth of testing

scenarios, speeds up the generation process, and lowers manual labor. The

potential of ChatGPT to automate and optimize software testing is

demonstrated in this study, providing a more effective and flexible solution

for a variety of testing scenarios.

Keywords: Software Testing, Intelligent Test Case ChatGPT, NLP, Deep

Learning

Introduction

Thorough software testing is vital to ensuring the

reliability and quality of software products. Recognizing

the potential consequences of delivering faulty software

to users, companies are cautious about releasing their

products without a rigorous testing process. By employing

meticulous testing strategies, organizations can minimize

the risk of critical failures, usability challenges, or

security vulnerabilities, which might otherwise lead to

financial losses or erode customer confidence.

Furthermore, identifying and addressing issues early in

the development process significantly reduces long-term

maintenance costs, reinforcing the importance of testing

throughout the software lifecycle (Wang et al., 2024).

The importance of software testing has attracted a lot of

interest from the academic and business worlds, and it is

now a very busy and well-liked field of study in software

engineering. The popularity of testing-related subjects at

significant software engineering conferences and

symposiums is evidence of this. These topics often account
for the majority of submissions and are regularly chosen for

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1141

publication, highlighting their vital significance in

furthering the profession (Wang et al., 2024).

High-quality software has grown much more in

demand as software systems become more complicated

and technology gets more deeply integrated across

sectors. Robust software quality models are necessary for

assessing and guaranteeing software efficiency,

dependability, and overall excellence. These models offer

structures for evaluating and enhancing the quality of

software. One metric-based technique that is highly

respected for its clear and organized evaluation

methodology is the Quality Assessment Model (QAM),

which is especially useful in a variety of development

scenarios. In order to better understand the applicability

and efficacy of existing software quality models in

various scenarios, this study will examine and compile

them (Yan et al., 2017).

The promise of modeling code was initially

demonstrated by Hindle et al. (2016), and language

modeling of code has since become a significant area of

study in software engineering research. Researchers started

using Deep Learning (DL) architectures to learn rich,

hierarchical representations of code that could be used for

a variety of downstream tasks as language modeling

techniques advanced (White et al., 2015). Concurrently, the

fields of machine learning and natural language processing

initiated the construction of extensive models that were

based on a particular category of neural architecture known

as the transformer (Vaswani et al., 2017; Brown et al.,

2020; Devlin et al., 2018), trained on extensive text

datasets. The representational capability of these Large

Language Models (LLMs), as well as language models

designed expressly for code, was demonstrated through

experiments (Lertbanjongngam et al., 2022; Feng et al.,

2020; Allamanis et al., 2017; Chen et al., 2021).

An advanced Artificial Intelligence (AI) system

known as an LLM has undergone significant training on a

variety of data sources, such as books, code, articles, and

webpages. To create cohesive material, these models-

which include Generative Pre-trained Transformer-3

(GPT-3), Bidirectional Encoder Representations from

Transformers (BERT), (Text-to-Text transfer

transformer) T5 and extreme Multilingual language

model (XLNet)-use the language's natural patterns and

linkages. This comprises syntactically correct code

snippets, human-like paragraphs, and grammatically

perfect phrases. Due to their capacity to comprehend and

produce contextually appropriate language, LLMs are

becoming increasingly popular across a range of areas.

They represent a significant improvement in machine

learning and natural language processing (Ozkaya, 2023;

Chang et al., 2024).

Nevertheless, until recently, these models were mainly

limited to particular job environments and did not offer

organic means of communication with end users.

Randoop and other random-based approaches are
frequently used to automate the creation of test cases. The

feedback-directed random testing methodology used by
Randoop starts by producing arbitrary method call

sequences. It assesses the results of these runs in order to
direct the creation of further tests, highlighting untried

approaches or routes. Randoop increases the variety and
comprehensiveness of testing by keeping an eye on

execution outcomes to make sure the program operates as
intended and adjusting test cases in response to the

behavior it observes (Pacheco and Ernst, 2007).
In a similar vein, new developments such as A3Test

use assertion-augmented techniques to generate test cases
automatically. By including assertions into the process,

A3Test improves the quality of test cases that are
generated, improving the identification of unexpected

program behaviours and boosting the dependability of the
testing results (Alagarsamy et al., 2024).

ChatGPT (OpenAI, 2024), an AI tool developed on
top of pre-existing LLMs that allowed for communication

through an interface, was released by OpenAI in late
2022. Using techniques from earlier work on InstructGPT

(Ouyang et al., 2022), which trained LLMs with both
unsupervised data and with supervision in the form of

task instruction, OpenAI used reinforcement learning
from human input to enable this kind of engagement.

Essentially, the model was trained on actual human text-
based conversations at first, and it subsequently learned

to improve its responses based on feedback from human
assessors who assessed the Caliber of responses in a

reinforcement learning environment. The effort of
developing an interface that allowed users to quickly

access the latent "knowledge" of LLMs proved to be
quite effective.

Code inspections, requirements inspections,

compliance checklists, module and system testing,

document inspections and testing, service testing, and
distribution media testing are important methods for

ensuring quality and identifying errors. By ensuring

comprehensive validation across the whole development

and deployment process, these approaches improve the

dependability and consistency of software and associated

deliverables (Jeanrenaud and Romanazzi, 2024).

While authors and reviewers are seated in the same

room to review code updates, the purpose of code

inspections is to identify errors. The most recent

compendium of research on code inspection was created

by Kollanus and Koskinen (2009). They discovered that

empirical research accounts for the great bulk of code
inspection investigations. It is widely agreed upon that

code inspection is a valuable method for identifying

defects and that using reading comprehension techniques

to keep inspectors interested is also beneficial. As the

internet has grown and asynchronous code review

techniques have proliferated, research on code inspection

has generally decreased after 2005.

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1142

Email-based asynchronous review process: The

majority of sizable open-source software projects used

remote, asynchronous reviews up until the late 2000s,

depending on patches submitted to mailing lists and issue-
tracking systems. Members of the project assess patches

that have been contributed and request changes using

these channels. The fix is committed to the codebase by
core developers once it is judged to be of sufficient

quality. Rather than performing pre-commit reviews,

trusted committers may use a commit-then-review

procedure (Rigby and Bird, 2013). Primarily, this form
of review "has little in common (with code inspections)

beyond a belief that peers will effectively find software

defects," according to Rigby et al., who were among the
first to conduct considerable work in this scenario

(Rigby et al., 2014). In a similar situation, Kononenko et al.

found that review response time and acceptance are

correlated with social aspects that were absent from code
inspections, such as reviewer load and change author

experience (Kononenko et al., 2016).

Model of development that is pull-based: A developer
who wants to make changes forks an existing Git

repository and makes the changes in their fork through the

GitHub pull request process (GitHub, 2016). A pull
request that has been submitted gets added to the project's

pull request list and becomes available to all project

viewers. Analogous to earlier tool-based code evaluations,

Gousios et al. qualitatively examined the work patterns and
difficulties faced by pull-request integrators (Gousios et al.,

2015) and contributors (Gousios et al., 2016).

Why is AI software testing necessary? New needs and
incentives are brought about by the rapidly expanding AI

software and the growing popularity of big data-based

applications. AI-based features and functions will be

incorporated into many programs both now and in the
future. The methods and resources now in use are

insufficient for testing AI-based features and capabilities.

There aren't enough precise, experienced quality validation
methods available, models, and standards for evaluation.

Furthermore, there aren't many AI-based testing techniques

or AI software solutions available. Therefore, the definition

that follows explains what it means to test AI software. The
term "testing AI software" describes a variety of testing

procedures for AI-based systems and software. In order to

facilitate test activities and meet pre-selected sufficient
testing criteria and quality assurance standards, well-

defined quality validation models, methodologies,

techniques, and tools must be developed and deployed for
AI-based software. As a result, evaluating AI features in

software involves a variety of testing tasks to identify bugs

in the product, confirm its functionality, and ensure that

quality validation techniques need to be created. The
purpose of testing is to ensure that the under-tested AI

software satisfies quality assurance standards, pre-

established testing criteria, and well-defined test
requirements (Tao et al., 2019).

AI software testing should encompass commonly
used intelligent features like recommendation,

recognition, and prediction, as it is constructed using a
variety of machine learning models and data-driven

technologies. The main area of AI software testing is
depicted in Fig. (1). AI software testing includes a

significant amount of testing, including objects (human
and animal), such as object identification, recognition,

and behavior detection. Current significant AI testing
subjects include a variety of intelligent applications,

including question-and-answer capabilities, analytics
and prediction capabilities, intelligent commands and

actions, business decisions, recommendations, and
selection (Yin et al., 2018; Sun et al., 2017; Qi et al.,

2018) and analytics and prediction capability (Sun et al.,
2019; Yin et al., 2017; Qi et al., 2017; Nakao and

Eschbach, 2008). Furthermore, a significant challenge
for AI testing and quality validation will be figuring out

how to do control validation and healthcare checks,
given the development of unmanned vehicles and their

potential large markets. Furthermore, context-related
problems with AI software typically include scenario,

location (Yin et al., 2018), time, and stakeholder
difficulties. This leads to new testing challenges with

context identification and classification. The following
is a summary of AI software testing's main objectives.

Software testing has a big impact on quality assurance
and cost control. The "Cost of Poor Software Quality in

the US" paper, for instance, emphasizes how inadequate
testing may lead to significant costs, especially in vital

systems where human safety is at stake. These mistakes
cause long-term financial and operational inefficiencies,

which postpone the software's delivery. Bugs are far less
expensive to find and solve early in development than

they are to fix later in production (Tuteja and Dubey,
2012; Krasner, 2021). These expenses can also be

decreased by using quality assurance procedures meant to
stop errors, such as testing at every stage of the Software

Development Life Cycle (SDLC). Businesses may reduce
maintenance costs and improve software quality over time

by utilizing automated testing and proactive quality
management (Tuteja and Dubey, 2012).

Fig. 1: Proposed methodology

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1143

Test case selection has been optimized using a variety of

techniques, including meta-heuristic algorithms like Genetic

Algorithms (GA) and Particle Swarm Optimization (PSO).

By increasing each test case's efficiency, these methods seek
to lower testing expenses while also enhancing the overall

quality of the program. To ensure that the most important

tests are prioritized, PSO may modify the "weight" or
importance of each test case. On the other hand, GA can

optimize test cases by experimenting with different

combinations to find the most effective ones. By

identifying flaws early in the development process,
automating the selection and execution of these optimized

test cases can improve software performance after release

and lower the expenses related to subpar software quality
(Furtado et al., 2016; Prakash et al., 2020).

The most common problem category, according to

research on bug repair in machine-learning libraries, was

bugs, with a sizable portion of reported issues being
incorrectly categorized. It highlighted the necessity of

improved issue management to shorten resolution

timeframes and proposed that streamlining procedures
and enlisting additional contributors should speed up bug

resolution (Ajibode et al., 2023). In a similar vein, studies

on software maintenance have shown how crucial adaptive
and corrective maintenance is to bug management.

Reiterating that efficient bug identification is essential for

software quality, particularly in production contexts where

undiscovered flaws may seriously harm operations and
reputation, it covered how new issues might occur when

resolving old ones (Bello and Tobi, 2024).

The potential of ML techniques to automate test case
selection and prioritizing, improving testing efficiency,

was investigated in a recent literature review. In

particular, machine-learning approaches that rank test

cases according to factors like coverage, test performance,
and historical data are advantageous for regression testing

and other methodologies (Pan et al., 2022). Numerous

studies have addressed important issues that developers
and testers confront, including test case selection, priority,

and optimization. A systematic review on test case

prioritization, for example, stresses the significance of

ranking test cases, especially in regression testing, and
stresses the importance of prioritization in managing

resource constraints during software maintenance and

guaranteeing software reliability (Mehmood et al., 2024;
Singhal et al., 2021).

Additionally, studies indicate that machine learning

may optimize test suites, resulting in better coverage,
lower costs, and better test case selection. This is

particularly crucial for decision-making processes like

figuring out which test cases have the biggest effects and

when to quit testing. Furthermore, unfixed flaws can
result in serious operational concerns. Therefore, testing

methods need to change to reflect the ever-changing

landscape of software development (Mehmood et al.,
2024; Singhal et al., 2021).

The core issue of software testing, "What is a test data

adequacy criterion?" is highlighted by the guidelines for

determining whether a software system has undergone

sufficient testing or software test adequacy criteria.

Numerous test data adequacy criteria, including data

flow-based, fault-based, error-based, and control flow-

based test adequacy criteria, have been put out and

examined in the literature. Statement coverage, branch

coverage, path coverage, length-i path coverage, loop

coverage, relational operator coverage, table coverage (if

every entry in a given array has been referenced), and the

cyclomatic number criterion are examples of control

flow-based adequacy criteria. All definitions and use

criteria are part of the data-flow-based adequacy criteria.

The criteria for fault-based adequacy encompass error

seeding, mutant coverage, and mutant killing score. Every

criterion has advantages and disadvantages of its own.

How test adequacy criteria relate to fault detection

capacity is a key subject in the research on test adequacy

criteria (Nakao and Eschbach, 2008; Qu et al., 2008).

The quantity of defects discovered and fixed before

the system's release determines how successful this

verification and validation process was. This, in turn, is

dependent on how well the test cases are created. An input

for the software being tested is called a test case. It is a

collection of parameters or circumstances that a tester

uses to assess whether or not a software system or

application is operating as intended. It is the process of

figuring out whether a system or software application has

succeeded or failed. Finding program input that satisfies

testing criteria is the process of data production for

software testing. Test data generators employ two distinct

methodologies, which are path-oriented and goal-oriented

(Nakao and Eschbach, 2008; Xin et al., 2007). Creating

error-free software typically requires a large number of

test cases. Since thorough testing is not feasible, the test

cases that are produced should be as good as possible,

covering the whole program and identifying as many flaws

as they can. One of the challenges with this technique is the

automatic production of optimum test scenarios (Tallam

and Gupta, 2006).

A test suite sometimes called a validation suite, is made

up of a number of test cases intended to confirm how a

software program works and behaves under particular

circumstances. Instructions for setting up the system, test

case goals, and precondition information required for their

execution are usually included in these suites. Current

research emphasizes the difficulties in keeping test suites

effective, especially when it comes to reducing superfluous

or duplicate test cases, which can drive up testing expenses.

(Mehmood et al., 2024) Address the utilization of machine

learning methods to optimize test suites, emphasizing the

removal of redundancies and the improvement of test

coverage through the utilization of prediction models and

historical data.

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1144

In addition, Singhal et al. (2021) offer a methodical

analysis of test case prioritization and selection, focusing

on resource-efficient and dynamic testing techniques to

guarantee successful validation while lowering expenses.
These revelations highlight the significance of test case

optimization for improving software testing procedures'

overall effectiveness and guaranteeing the best possible
use of available resources. Furthermore, (Kiran et al.,

2019) offer a thorough analysis of contemporary trends,

tools, and methodologies for test suite optimization,

highlighting the necessity of better methods to lessen
testing-related financial pressure. According to previous

performance statistics, (Bagherzadeh et al., 2022) also

emphasize the potential of reinforcement learning
approaches for test case prioritization, which optimizes

testing procedures by concentrating on the most important

tests (Kiran et al., 2019; Bagherzadeh et al., 2022).

Finding a subset of test cases that reduces redundancy
while meeting the same coverage criteria as the original

suite is known as "minimizing" a test suite. Since this

problem is computationally demanding (NP-complete),
heuristic approaches are frequently used. For example,

optimization has been successfully accomplished through

the use of evolutionary algorithms in conjunction with
mutation testing. Using mutation testing to increase test

suite efficiency, (Zheng et al., 2017) presented a many-

objective evolutionary optimization approach that shows

promise in reducing test case redundancy while
maintaining essential test coverage.

Problems of a peculiar character are ones that need

an unusual combination of data-driven and knowledge-
driven methods to be solved. Test case optimization is a

search space problem for which a hybrid approach

combining data-driven and knowledge-driven methods

is needed to achieve a close-to-optimal solution. Thus,
test case optimization is a unique kind of challenge

(Berndt and Watkins, 2005).

A subset of AI known as ML has been transforming
various fields in the previous several decades, having

begun in the 1950s. A branch of machine learning called

Neural Networks (NN), from which DL originated, has

introduced and produced ever-larger disruptions while
demonstrating remarkable success in nearly every

application domain. ML techniques classified as DL (deep

architecture of learning or hierarchical learning
approaches) were primarily developed in 2006.

Estimating model parameters is a step in the learning

process that enables the learned model or algorithm to
carry out a particular task. For instance, the weight

matrices (𝑤 𝑖, ′𝑠) are the parameters of Artificial Neural

Networks (ANN). On the other hand, DL has multiple

layers that sit between the input and output layers. These
layers enable the use of multiple hierarchical designs for

non-linear information processing units, which are then

used for feature learning and pattern categorization
(Schmidhuber, 2015; LeCun et al., 2015).

Representation learning is another term for a learning
approach based on data representations (Bengio et al.,

2013). According to recent research, representation
learning based on DL entails a hierarchy of features or

concepts, where low-level concepts can be defined from
high-level ones and high-level concepts from low-level

ones. As DL is not task-specific, it has also been referred
to in some articles as a universal learning strategy that can

address nearly any type of issue in a variety of application
areas (Bengio, 2009; Alom et al., 2019).

In its sixth round, the Message Understanding
Conference (MUC) introduced the idea of Named Entity

Recognition (NER) (Grishman and Sundheim, 1996).
Scholars have persisted in classifying alignment into

increasingly discrete categories, including places, people,
and proper nouns (Lee and Lee, 2005). People can be

classified into a variety of groups, including politicians,
entertainers, and associations (Liu et al., 2022). Artificial

or manufactured languages, such as computer languages,
are not considered to be part of the category of natural

languages spoken by people. Computational methods for
computer-assisted natural language processing are

included in NLP. Since voice is frequently used without
being excluded, NLP is introduced to include speech and

other NLP components (Hannan et al., 2012). natural
language understanding, machine translation, speech

recognition, voice synthesis, and other subfields make up
NLP (Saetre, 2006).

DL is a subfield of machine learning, which is a
subfield of AI (Sze et al., 2017). The superior

performance of DL comes from its ability to extract high-
level features from raw data.

Related Work

ChatGPT's potential as an extensive language model

for software testing instruction. While some instructors
are concerned that students may abuse these technologies,

others see them as an opportunity to design creative and
engaging learning environments. Researchers assessed

the capacity of ChatGPT to respond to practice questions
from a well-known software testing textbook. The

majority of the questions (77.5%) could be answered by
ChatGPT, although its accuracy wasn't perfect-it

answered questions correctly or somewhat correctly
55.6% of the time. Similar percentages of explanations

(53% correct or somewhat correct) were provided. It's
interesting to note that ChatGPT's Accuracy increased

little when a series of related questions were asked. The
model's degree of confidence in its responses, meanwhile,

didn't appear to be correlated with Accuracy. This study
offers a dataset of ChatGPT replies and an evaluation of

its advantages and disadvantages, which will be helpful
for future research. Along with exploring the pedagogical

implications of employing LLMs in education, the authors
provide resources to assist others in replicating their work.

The study's overall conclusion is that ChatGPT has

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1145

potential as a teaching tool, but before it is widely used in
software testing instruction, its drawbacks should be

carefully considered (Jalil et al., 2023).
Its feasibility is in leveraging LLMs like ChatGPT to

automatically generate test cases from informal bug

reports. It addresses a significant challenge in software

development: Creating test cases for problems that users

report that are often too complex and challenging for

traditional test creation methods to handle. The

researchers created test cases from the Defects4J dataset

using ChatGPT and codeGPT to illustrate the potential of
LLMs in this field. Automating the creation of test cases,

this technique could speed up the software development

process and improve the efficacy of identifying and fixing

issues (Plein et al., 2024).

The potential of ChatGPT as a helpful AI language

model for software developers. It investigates how AI

might improve upon normal software development

processes, which typically entail a number of steps such

as requirement analysis, design, coding, and testing. AI

offers skills like pattern recognition and decision-making

to expedite these processes. The study, which focuses on

ChatGPT's support for developers, finds that it can be a
helpful tool for saving time, optimizing workflow, and

testing automation. The paper does mention the need for

more research and responsible AI deployment to address

potential ethical concerns. Taking everything into

account, the research indicates that ChatGPT and other AI

technologies have the potential to drastically change

software development by boosting output, creativity, and

quality (Özpolat et al., 2023).

How ChatGPT, a powerful language model, may

enhance software testing using Metamorphic Testing

(MT). Using relationships, or metamorphic relations,
between inputs and outputs, MT is a technique that checks

programs for correctness. The most difficult task in MT is

locating new MRs. The study's goal is to ascertain

whether ChatGPT can generate precise MRs for a variety

of software systems, including ones that have never

undergone MT testing. The results show that ChatGPT

is capable of generating novel MRs; nevertheless,

human intelligence is still needed to verify and fine-tune

them. In summary, ChatGPT can be a helpful tool for

enhancing software testing intelligence as it suggests

MR candidates that could be used for test

implementation (Luu et al., 2023).

Recently, LLM-based techniques for automated code
creation have gained popularity. These techniques use the

transformer architecture (Vaswani et al., 2017; Radford et al.,

2018; Black et al., 2021; Achiam et al., 2023). According

to Chen et al. (2021), codex is a decoder-only language

model that has been refined using publicly accessible code

and has remarkable programming abilities. In the

meanwhile, an encoder-decoder architecture with

identifier-aware pre-training tasks based on T5 is used in

CodeT5, which was presented by Wang et al. (2021a);

Raffel et al. (2020). AlphaCode, which employs

reinforcement learning and test case execution to train
models that can perform at a beginner level on the Codeforces

platform, is another noteworthy addition (Li et al., 2022).

Furthermore, code generation benchmarks, such as

WizardCoder and InCoder (Fried et al., 2022), have been

significantly improved by open-source LLMs trained on

code (Li et al., 2023; Roziere et al., 2023; Luo et al., 2023).

To improve code ranking, one must have a strong

understanding of code. The main components of code

understanding are demonstrated by tasks including

functionality classification, clone identification, and

code search (Wang et al., 2020; Gu et al., 2021;

Arakelyan et al., 2022; Li et al., 2024). By using pre-
trained language models to capture meaningful

representations and modeling code as a series of tokens,

early methods concentrated on enhancing code

representation (Kanade et al., 2020; Wang et al., 2021b).

In programming and natural languages, CodeBERT

was the first pre-trained encoder-only architecture with a

token replacement detection objective (Feng et al., 2020).

GraphCodeBERT is an extension of this technique that

uses structure-aware pre-training tasks to extract

semantics from source code and data flow (Guo et al.,

2020). A technique for transforming AST into sentences
was presented in order to utilize AST data in a manner

akin to that of natural and computer languages (Ahmad et al.,

2021). To improve representation learning, UniXcoder

used multimodal multimodal information, including

AST, comments, and code fragments (Guo et al., 2022;

Lyu et al., 2025). Table (1) provides a summary of the

literature review.

Table 1: Summary of literature review

Study focus Key findings Implications Reference

ChatGPT in

software testing

instruction

Answered 77.5% of textbook questions; 55.6% were

correct or somewhat correct. Accuracy improved

slightly with related questions. Confidence levels

didn't correlate with Accuracy.

Supports interactive, self-directed

learning Needs ethical guidelines to

prevent misuse Promising for creating

engaging learning environments

Jalil et al. (2023)

Test case

generation from

bug reports

ChatGPT and CodeGPT generated test cases from

informal bug reports using the Defects4J dataset.

Automates complex test case creation.

Speeds up the software development

lifecycle. Enhance bug reporting and

resolution efficiency.

Plein et al. (2024)

Improving

software

development

workflow

ChatGPT supports tasks like requirement analysis,

coding, and testing. Offers pattern recognition and

decision-making capabilities

Saves time, optimizes workflows, and

improves software quality. Requires

responsible deployment to address ethical

concerns

Özpolat et al. (2023)

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1146

Enhancing

Metamorphic

Testing (MT)

ChatGPT generates novel Metamorphic Relations

(MRs) for testing but needs human validation.

Facilitates MT application to untested systems

Reduces manual effort in creating MRs.

Encourages AI-human collaboration in

intelligent software testing

Luu et al. (2023)

LLMs for code

understanding and

generation

Codex, CodeT5, and AlphaCode exhibit coding

abilities and competitive performance. CodeBERT,

GraphCodeBERT, and UniXcoder enhance code

representation with structural and semantic insights

Supports tasks like code completion, bug

fixing, and clone detection.

MultimodalMultimodal integration

advances code understanding

Vaswani et al. (2017);

Radford et al. (2018);

Wang et al. (2021a);

Li et al. (2022); Feng

et al. (2020)

Materials and Methods

An intelligent software testing framework that

incorporates ChatGPT, NLP, and DL is proposed in this

paper using a theoretical and conceptual approach. There

were no tangible tests or instruments utilized. The

research was carried out using:

1. A thorough analysis of current research using sources

like Google Scholar, IEEE Xplore, and the ACM

Digital Library to examine the use of LLMs in
software testing

2. Conceptual modeling of a framework that uses

ChatGPT to develop adaptive test scenarios,

comprehend software requirements, and minimize

manual testing effort.

3. Design guidance is provided by referencing

established AI models like Codex, CodeBERT, and

AlphaCode

The research problem can be stated as follows. In the

field of software development, building thorough and

efficient test cases is essential to guarantee the software's

functioning and quality. However, there are some

obstacles that developers must overcome in this process,

such as:

1. Complex requirements: It can be challenging to

develop thorough and precise test cases due to the

complexity and variety of software requirements

2. Inefficiency in manual generation: Producing test

cases by hand can be laborious and inefficient,

frequently resulting in insufficient coverage of

possible use cases

3. Lack of adaptability: Manually generated test cases

might not be able to alter quickly in response to

updates or modifications to the product

This study proposes a new approach, which combines

ChatGPT with DL and NLP methods and aims to tackle

the aforementioned issue. By using sophisticated AI-

driven test case production and optimization techniques in

conjunction with intelligent requirement analysis, this
methodology seeks to improve the precision and efficacy

of test case creation:

1. Analyzing software requirements:

 NLP: Software requirement documents can be

analyzed and understood by applying NLP

techniques. In order to retrieve pertinent data and
context, textual data must be parsed. Important

NLP jobs consist of:

 Named Entity Recognition (NER):

Recognize and categorize textual entities,

such as system interactions, user roles, and

functional components. This aids in

comprehending the precise components and
relationships that require testing

 Dependency parsing: Determine the

connections between the various needs'

components by examining the grammatical

construction of sentences

 Semantic analysis: To make sure that test

cases cover all required scenarios,

comprehend the meaning and intent behind

requirement descriptions

2. Generating test cases with ChatGPT:

 Intelligent test case building: Apply ChatGPT to

create test cases that are informed by the

knowledge gleaned from NLP analysis. Based

on a thorough understanding of the

requirements, ChatGPT uses design prompts to
help it develop test cases that cover a variety of

topics, including functionality, security,

performance, and integration

3. Integrating DL techniques:

 DL models: DL methods are used to improve test

case generation, optimization, and assessment.

This comprises:

 Convolutional Neural Networks (CNNs) or

Deep Neural Networks (DNNs): Utilize

these models to assess test case quality and

forecast efficacy by drawing on past

performance and trends

 Predictive analytics: Prioritize and improve

the generated instances by using predictive

models to predict the possible impact and

coverage of the test cases

4. Evaluating and analyzing test cases:

 Quality metrics: Establish measures to assess the

test cases' efficacy, such as:

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1147

 Coverage: Evaluate the extent to which the

various software requirements are covered

by the test cases

 Accuracy: Measure the precision of the test

cases in identifying defects or issues

 Predictive power: Evaluate the ability of test

cases to anticipate potential issues based on

historical data

 Automated analysis: To evaluate test results

and assess the test cases' efficacy, conduct

automated analysis. Utilize insights derived

from data to direct future enhancements

5. Continuous improvement:

 Interactive feedback: Establish a feedback

mechanism to get developers' opinions on the

efficacy and Caliber of the test cases. Examine
this feedback so that you can make data-driven

adjustments.

 Model enhancement: To guarantee constant

improvement and Accuracy, ChatGPT and DL

models should be updated frequently depending

on user feedback and performance evaluations

The benefits are:

 Enhanced Accuracy: Apply DL and advanced
natural language processing techniques to test

cases to increase their thoroughness and

precision

 Enhanced productivity: Optimize the

productivity of the test case development and

assessment procedures

Allow for flexible adaptation of the approach to meet
the requirements of various testing scenarios and
application kinds.

By presenting an intelligent software testing
framework that combines ChatGPT with NLP and DL
techniques to improve test case development and analysis,
the research investigates a fresh approach to software
testing. By utilizing cutting-edge AI capabilities, the

framework seeks to overcome the drawbacks of
conventional techniques by increasing the precision and
effectiveness of test case production. In particular, it will
make use of NLP techniques like dependency parsing and
Named Entity Recognition (NER) to thoroughly examine
and comprehend software requirements, guaranteeing that
all important aspects are taken care of.

Based on these in-depth insights, ChatGPT will be

used to dynamically create test cases that are

continuously adjusted based on real-time feedback.

Predictive analytics will be used to analyze the impact

and coverage of the test cases, and DL models will be

integrated to maximize their quality.

In addition to more conventional metrics like coverage

and Accuracy, the research will concentrate on creating

new evaluation criteria, including contextual relevance

and flexibility. A combination of quantitative metrics and

qualitative input will be used to evaluate the efficacy of

this novel technique in order to pinpoint areas in need of

development and offer practical suggestions for

integrating AI into test case production procedures. To

optimize the effectiveness of the framework and overall

testing quality, important difficulties such as guaranteeing

the Accuracy of input prompts and connecting the

framework with current testing tools will be addressed.

Table (2) shows the comparison of traditional and

intelligent methods for test case generation, highlighting

the advantages of integrating AI technologies like

ChatGPT, NLP and DL.

Table (3) shows the presented evaluation metrics for

ChatGPT, NLP and DL-based intelligent test case

frameworks, evaluating coverage, Accuracy, adaptability,

relevance, efficiency and developer satisfaction.

Table (4) shows the highlights of the integration of

NLP and DL technologies in test case generation,

highlighting their effectiveness in improving quality and

efficiency.

Table (5) shows the challenges in integrating the

intelligent test case framework, proposing solutions like

precision, consistency, and resource investment for smoother

implementation and improved test case generation.

Table 2: Comparison of traditional vs intelligent test case generation

Criteria Traditional methods Intelligent framework (ChatGPT + NLP + DL)

Test case generation Manual, frequently requiring a lot of time Dynamic, automated, and based on insights from AI and NLP

Requirement analysis Manual analysis and interpretation Automated NLP analysis, such as dependency parsing and NER

Adaptability Static and restricted to preconceived notions Dynamic, responsive to immediate response and evolving needs

Coverage Often constrained, may overlook special

circumstances

Thorough and includes a wider variety of situations

Consistency Varied and based on personal experience Consistent with generation and analysis powered by AI

Efficiency Laborious and time-consuming High productivity via integration of AI and automation

Integration Distinct from the testing instruments Integrates well with test management technologies that are

already in place

Evaluation metrics Coverage, Accuracy Contextual relevance, Accuracy, flexibility, and coverage

Cost Lower starting cost but more labor over time Greater setup costs upfront and possible continuing expenses for

AI tools

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1148

Table 3: Evaluation metrics for intelligent test case framework

Metric Description Measurement method Target values

Coverage The degree to which test cases
encompass various circumstances

The percentage of requirements
met

90% or higher

Accuracy The precision of created test cases in
finding problems

Comparing the number of
problems found to the real defects

Greater than 80% association

Adaptability The adaptability of the framework to
new or modified requirements

Time needed for test case
adaptation and updating

<24 h

Contextual relevance How closely do test scenarios match
the real requirements

Developer feedback's relevance
score

High degree of importance (>4/5)

Efficiency The amount of time and materials

needed to create and run test cases

The average amount of time for

each test case

At least a 50% reduction

Developer satisfaction The framework's perceived efficacy
and ease of use by developers

The survey of feedback Positive comments (more than
80%)

Table 4: Example of NLP and DL integration in test case generation

Component Function Technology used Output

NLP analysis
Extract and evaluate the specifications NER and dependency

parsing
Thorough comprehension of the
requirements

ChatGPT integration Create test cases using the insights from
NLP

GPT-4 or later versions Test cases for various scenarios

DL models Assess and enhance the created test cases CNNs and DNNs Evaluation and improvement of quality

Predictive analytics
Estimated efficiency and test case coverage Models of prediction and

historical data
Prioritization and impact analysis

Table 5: Challenges and solutions

Challenge Description Proposed Solution

Prompt Precision Incorrect prompts can result in suboptimal test cases Improve prompt generation techniques
and offer precise instructions

Contextual
Understanding

The individual is experiencing difficulty comprehending complex
requirements.

Improve NLP models to improve semantic
analysis

Consistency The text explains the concept of variability in the generation of
test cases.

Create standardized generating processes
and prompt templates

Integration Complexity The integration with existing tools is currently facing challenges Make integration guidelines and API
interfaces to ensure a smooth connection

Resource Investment The initial setup and licensing costs are high Evaluate cost-benefit analysis and look

into options that are more affordable.

With ChatGPT's integration of NLP and DL,

software test case development has improved

significantly by combining cutting-edge AI capabilities

with conventional approaches. While ChatGPT is

excellent at quickly creating a variety of test cases and

adjusting to changing needs, the quality of the

underlying NLP models and the clarity of input prompts

have a significant impact on how effective ChatGPT is.

Notwithstanding its advantages, ChatGPT could have

trouble capturing the subtle understanding needed in

complex situations. On the other hand, conventional

techniques offer the breadth of human judgment and all-

encompassing coverage required for exhaustive testing.

This implies that ChatGPT should be viewed as an

additional tool that improves conventional testing

methods rather than as a replacement when used in

conjunction with NLP and DL. This hybrid approach

offers a more robust, efficient, and accurate software

testing process while preserving the crucial oversight

and validation supplied by experienced engineers by

fusing the sophisticated capabilities of AI with tried-

and-true testing procedures.

Test Cases

System test cases are tabulated in Table (6), while

acceptance test cases are tabulated in Table (7). Table (8)

provides unit test cases, while Table (9) provides

performance test cases. Table (10) lists the security test cases.

To make test cases for a task management system, let

us bring this notion to ChatGPT and request that it do so.

To ensure the robust functionality of a task management

system, various types of testing are employed. System

testing focuses on verifying that the entire system operates

correctly, including user logins, task creation, and task

details display. For instance, tests might check if users can

log in and access their task dashboards or if newly created

tasks are accurately displayed. Acceptance testing

validates that the system meets user requirements, such as

confirming that tasks can be created with all necessary

fields and correctly assigned to users. Unit testing

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1149

examines individual components, such as functions

responsible for task creation and status updates, ensuring

they work as intended in isolation. Performance testing

evaluates the system's ability to handle various loads,

measuring response times for task creation and system

behavior under high user activity to ensure efficiency and

scalability. Security testing addresses potential

vulnerabilities, ensuring unauthorized users cannot access

tasks and that data protection mechanisms are in place to

prevent injection attacks. Each type of testing plays a

crucial role in delivering a reliable and user-friendly task

management system.

Table 6: System Test Cases

Test case ID Description Preconditions Test steps Expected result

ST001 Verify user can log in and
access the task dashboard

The user is registered
and has valid
credentials

1. Navigate to the login page
2. Enter a valid username and
password
3. Click "Login"

The user successfully logs in
and is redirected to the task
dashboard

ST002 Verify task details are

correctly displayed

The user is logged in

and has tasks assigned

1. Navigate to the task

dashboard
2. Select a task to view
3. Verify task details (title,
description, due date)

Task details are correctly

displayed as per the
information in the system

ST003 Verify task can be created and
appears in the list

The user is logged in 1. Navigate to the "Create
Task" page
2. Enter valid task details
3. Click "Save".

4. Navigate to task list

A new task with the correct
details appears in the task list.

Table 7: Acceptance test cases

Test case ID Description Preconditions Test steps Expected result

AT001 Validate task creation
with all required fields

The user is logged in 1. Navigate to "Create Task"
2. Enter title, description, due date

3. Click "Save"

The task is created with all fields
properly filled and visible in the

task list

AT002 Validate task assignment
to a specific user

The user is logged in
and has permissions

1. Navigate to "Assign Task"
2. Select a task
3. Choose a user from the list
4. Click "Assign"

The task is assigned to the selected
user and appears in their task list

AT003 Verify task status
update functionality

The user is logged in
and has tasks

1. Navigate to the task list
2. Select a task

3. Change the status to Completed
4. Click "Save"

The task status has been updated
and reflected in the task list.

Table 8: Unit test cases

Test case ID Description Preconditions Test steps Expected result

UT001 Verify task creation
function

The system is set up
and running

1. Call the create task () function with valid
parameters
2. Check the return value and task list

A task is created and
appears in the task list

UT002 Verify task
assignment function

The system is set up
and running

1. Call the assigned task () function with a valid
task ID and user ID
2. Check the task assignment details

The task is assigned to
the correct user

UT003 Verify task status

update function

The system is set up

and running

1. Call the update task status () function with a

valid task ID and status
2. Check the task status

The task status is

updated correctly

Table 9: Performance test cases

Test Case ID Description Preconditions Test steps Expected result

PT001 Measure response time

for task creation

The system is set up

and has baseline
performance data

1. Measure the time taken to

create a task with valid details
2. Perform multiple task
creations in succession

Response time is within

acceptable limits (e.g., < 2
sec)

PT002 Assess system
performance under load

The system is set up,
and performance testing
tools are available

1. Simulate multiple concurrent
users creating and updating tasks
2. Monitor system performance
and response times

The system maintains
performance and stability
under load

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1150

PT003 Verify system scalability The system is set up,
and baseline
performance data is
available

1. Gradually increase the number
of tasks in the system
2. Monitor performance metrics
(e.g., response time, CPU usage)

The system scales
appropriately with increasing
task volume without
significant performance
degradation

Table 10: Security test cases

Test case ID Description

Preconditions Test steps Expected result

SCT001 Verify unauthorized users cannot
access tasks

The user is
logged out

Attempt to access task management
features without logging in

Access is denied,
and the user is
redirected to the

login page

SCT002 Verify task data is protected against
injection attacks

The user is
logged in

1. Attempt to input SQL injection
or other malicious code in task
fields
2. Submit and check for system
behavior

Input is sanitized; no
injection attack
succeeds

SCT003 Check for proper session management The user is
logged in

Log in and then attempt to access
tasks from a different browser or
device

Session management
prevents
unauthorized access

Table 11: Scenario and metrics

Scenario Objective Relevance Coherence Coverage

Scenario 1: Text extraction
accuracy in different fonts

Verify the OCR system's Accuracy in extracting text from
documents using various fonts

High High Medium

Scenario 2: Handling redacted
information

Test the OCR system's ability to correctly identify and
ignore redacted portions while extracting text.

High High High

Scenario 3: Recognition of
handwritten annotations

Evaluate the OCR system's performance in recognizing
handwritten notes or annotations

Medium High Medium

Scenario 4: Security of OCR
output storage

Ensure secure storage of extracted text from confidential
documents with encryption and access control.

High High High

Scenario 5: OCR performance on
multi-language documents

Test the OCR system's capability to accurately recognize
and extract text from multi-language documents

High High High

Case Study

This section provides a case study on testing a system for

Optical Character Recognition (OCR) for confidential

documents. Table (11) shows that it provides a clear

overview of the test scenarios, helping prioritize which areas

to focus on based on relevance, coherence, and coverage.
Scenarios 1, 2, 4, and 5 are highly relevant, directly

targeting critical aspects of OCR for confidential

documents. Scenario 3 is slightly less relevant but still

important. All scenarios are coherent, with logical steps
that align with the testing goals. Scenarios 2, 4, and 5

provide high coverage by addressing key edge cases and

system capabilities. Scenarios 1 and 3 offer medium

coverage as they focus on specific aspects.

Results and Discussion

This paper offers a theoretical framework for
intelligent software testing that supports and improves test

case analysis by combining ChatGPT, DL, and NLP

approaches. Despite the lack of empirical implementation

or evaluation, the framework's potential efficacy can be

deduced from existing literature and conceptual analysis.

1. Assessment of the Proposed Framework

Conceptually

Utilizing the contextual awareness and reasoning

powers of large language models (LLMs) to validate

software test cases. The system's objectives are to detect

test coverage gaps, automate the creation of test

scenarios, and improve software testing decision-

making by using natural language inputs.

Although actual outcomes have not yet been

obtained, the concept theoretically provides:

 Improved completeness of test cases using clever

recommendation systems

 Automating portions of the testing process
reduces the amount of manual labor required.

 Context-aware language processing for

enhanced flexibility across project areas

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1151

The results of earlier research that examined LLMs

in software engineering settings are in excellent

agreement with these theoretical advantages.

2. Comparing with Related Research

Recent research results bolster the justification

and anticipated benefits of the suggested framework:

 ChatGPT's ability to respond to inquiries about
software testing was emphasized by Jalil et al.

(2023), who also suggested that it may be useful

in learning settings and possibly in automated

reasoning while designing tests

 Plein et al. (2024) showed how to utilize

ChatGPT and CodeGPT to create test cases from

bug reports, confirming that LLMs can handle

unstructured or informal material to create

structured test artifacts. Our framework also

contemplates this method

 According to Özpolat et al. (2023), ChatGPT can
assist with a number of development activities,

including testing. This reinforces one of the

tenets of our suggested approach, which is the

wider involvement of AI in the software lifecycle

 A key concept in the current work is the potential

for collaborative AI-human testing settings, which

Luu et al. (2023) demonstrated can help with

Metamorphic Testing by proposing novel relations

 The use of models like Codex, CodeT5, and

CodeBERT to improve test case quality, fault

detection, and software reliability has been
validated by Vaswani et al. (2017), Radford et al.

(2018), Wang et al. (2021a), Li et al. (2022), and

Feng et al. (2020). These models have

demonstrated strong code reasoning and

generation abilities

3. Insights & Future Paths

Software testing procedures could be greatly

enhanced by combining ChatGPT and deep learning

into a single testing framework, according to the

report. Further empirical research is necessary to test

these assumptions and improve the framework,

though, as the study is still in its theoretical phase,

some potential avenues for future investigation are:

 Applying the framework to actual software

testing settings

 Comparing its performance to both conventional
and AI-based testing instruments

 Investigating domain-specific modifications and

optimizing models for particular situations

 Looking into ethical issues and explainability in

software testing with AI assistance

In summary, this work offers a systematic and
progressive vision for intelligent software testing while
being theoretical. It establishes a framework for upcoming
experiments and implementations to enhance AI's
function in software quality assurance.

Conclusion

This study explores the use of NLP and DL with
ChatGPT, an OpenAI language model, to enhance
software testing scenarios. The study demonstrates
ChatGPT's ability to understand complex software
requirements, generate relevant scenarios and adapt to
different environments. It suggests that ChatGPT can
reduce human labor, produce more reliable testing
procedures and expedite scenario development.

One possible future direction is to fine-tune a GPT
model on specific domain data for better scenario
generation. Another future work is to integrate with
testing frameworks like Selenium or Pytest to
dynamically generate and execute tests.

Acknowledgment

Thank you to the publisher for their support in the
publication of this research article. We are grateful for the
resources and platform provided by the publisher, which
have enabled us to share our findings with a wider
audience. We appreciate the efforts of the editorial team
in reviewing and editing our work, and we are thankful for
the opportunity to contribute to the field of research
through this publication.

Funding Information

No particular grant from a public or private funding

agency was obtained for this research.

Author’s Contributions

Both authors have contributed equally to this study.

Ethics

This piece of writing is unique and includes unreleased
content. All co-authors have read and approved the article,
and the corresponding author attests that there are no
ethical concerns.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya,
I., Aleman, F. L., McGrew, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I.,
Balaji, S., Balcom, V., Baltescu, P., Bao, H.,
Bavarian, M., Belgum, J., Bello, I., et al. (2023).
Gpt-4 Technical Report. ArXiv:2303.08774.

https://doi.org/10.48550/arXiv.2303.08774

https://doi.org/10.48550/arXiv.2303.08774

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1152

Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K.-W.

(2021). Unified Pre-Training for Program

Understanding and Generation. ArXiv:2103.06333.

https://doi.org/10.48550/arXiv.2103.06333

Ajibode, A., Yunwei, D., & Hongji, Y. (2023). Software

Issues Report for Bug Fixing Process: An Empirical

Study of Machine-Learning Libraries. Software

Engineering.

https://doi.org/10.48550/arXiv.2312.06005

Alagarsamy, S., Tantithamthavorn, C., & Aleti, A. (2024).

A3Test: Assertion-Augmented Automated Test Case

Generation. Information and Software Technology,

176, 107565.

https://doi.org/10.1016/j.infsof.2024.107565

Allamanis, M., Brockschmidt, M., & Khademi, M.

(2017). Learning to Represent Programs with

Graphs. ArXiv:1711.00740.

https://doi.org/10.48550/arXiv.1711.00740

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S.,

Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B.

C., Awwal, A. A. S., & Asari, V. K. (2019). A State-

of-the-Art Survey on Deep Learning Theory and

Architectures. Electronics, 8(3), 292–369.

https://doi.org/10.3390/electronics8030292

Arakelyan, S., Hakhverdyan, A., Allamanis, M., Garcia,

L., Hauser, C., & Ren, X. (2022). NS3: Neuro-

Symbolic Semantic Code Search. Advances in Neural

Information Processing Systems, 35, 10476–10491.

Bagherzadeh, M., Kahani, N., & Briand, L. (2022).

Reinforcement Learning for Test Case Prioritization.

IEEE Transactions on Software Engineering, 48(8),

2836–2856. https://doi.org/10.1109/tse.2021.3070549

Bello, R.-W., & Tobi, S. J. (2024). Software Bugs:

Detection, Analysis and Fixing. SSRN Electronic

Journal, 189, 1–22.

https://doi.org/10.2139/ssrn.4662187

Bengio, Y. (2009). Learning Deep Architectures for AI. 2.

https://doi.org/10.1561/2200000006

Bengio, Y., Courville, A., & Vincent, P. (2013).

Representation Learning: A Review and New

Perspectives. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(8), 1798–1828.

https://doi.org/10.1109/tpami.2013.50

Berndt, D. J., & Watkins, A. (2005). High Volume

Software Testing using Genetic Algorithms.

Proceedings of the 38th Annual Hawaii International

Conference on System Sciences, 318–318.

https://doi.org/10.1109/hicss.2005.296

Black, S., Gao, L., Wang, P., Leahy, C., & Biderman, S.

(2021). Gpt-neo: Large Scale Autoregressive Language

Modeling with Mesh-Tensorflow. If You Use This

Software, Please Cite It Using These Metadata, 58(2).

https://doi.org/10.5281/zenodo.5297715

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.

D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,

G., Askell, A., Agarwal, S., Herbert-Voss, A.,

Krueger, G., Henighan, T., Child, R., Ramesh, A.,

Ziegler, D., Wu, J., Winter, C., … Amodei, D.

(2020). Language Models are Few-shot Learners.

Advances in Neural Information Processing System,

33, 1877–1901.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu,

K., Chen, H., Yi, X., Wang, C., Wang, Y., Ye, W.,

Zhang, Y., Chang, Y., Yu, P. S., Yang, Q., & Xie, X.

(2024). A Survey on Evaluation of Large Language

Models. ACM Transactions on Intelligent Systems

and Technology, 15(3), 1–45.

https://doi.org/10.1145/3641289

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. de

O., Kaplan, J., Edwards, Harri, Burda, Y., Joseph, N.,

Brockman, G., Ray, Alex, Puri, R., Krueger, G.,

Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan,

B., Gray, S., Zaremba, W. (2021). Evaluating Large

Language Models Trained on Code.

ArXiv:2107.03374.

https://doi.org/10.48550/arXiv.2107.03374

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K.

(2018). Bert: Pre-Training of Deep Bidirectional

Transformers for Language Understanding.

ArXiv:1810.04805.

https://doi.org/10.48550/arXiv.1810.04805

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,

M., Shou, L., Qin, B., Liu, T., Jiang, D., & Zhou, M.

(2020). CodeBert: A Pre-Trained Model for

Programming and Natural Languages. Findings of

the Association for Computational Linguistics:

EMNLP 2020, 1536–1547.

https://doi.org/10.18653/v1/2020.findings-

emnlp.139

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace,

Eric, Shi, F., Zhong, R., Yih, W., Zettlemoyer, Luke,

& Lewis, M. (2022). Incoder: A Generative Model

for Code Infilling and Synthesis. ArXiv:2204.05999.

https://doi.org/10.48550/arXiv.2204.05999

Furtado, A. P., Meira, S., Santos, C., Novais, T., &

Ferreira, M. (2016). FAST: Framework for

Automating Software Testing. He Eleventh

International Conference on Software Engineering

Advances, 91.

GitHub. (2016). GitHub pull request process.

https://help.github.com/articles/using-pull-requests

Gousios, G., Storey, M.-A., & Bacchelli, A. (2016). Work

Practices and Challenges in Pull-Based

Development. Proceedings of the 38th International

Conference on Software Engineering, 285–296.

https://doi.org/10.1145/2884781.2884826

https://doi.org/10.48550/arXiv.2103.06333
https://doi.org/10.48550/arXiv.2312.06005
https://doi.org/10.1016/j.infsof.2024.107565
https://doi.org/10.48550/arXiv.1711.00740
https://doi.org/10.3390/electronics8030292
https://doi.org/10.1109/tse.2021.3070549
https://doi.org/10.2139/ssrn.4662187
https://doi.org/10.1561/2200000006
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1109/hicss.2005.296
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.1145/3641289
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.48550/arXiv.2204.05999
https://help.github.com/articles/using-pull-requests
https://doi.org/10.1145/2884781.2884826

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1153

Gousios, G., Zaidman, A., Storey, M.-A., & Deursen, A.

van. (2015). Work Practices and Challenges in Pull-

Based Development: The Integrator’s Perspective.

2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, 358–368.

https://doi.org/10.1109/icse.2015.55

Grishman, R., & Sundheim, B. (1996). Message

Understanding Conference-6. Proceedings of the 16th

Conference on Computational Linguistics, 466–471.

https://doi.org/10.3115/992628.992709

Gu, J., Chen, Z., & Monperrus, M. (2021).

MultimodalMultimodal Representation for Neural

Code Search. 2021 IEEE International Conference

on Software Maintenance and Evolution (ICSME),

483–494.

https://doi.org/10.1109/icsme52107.2021.00049

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., & Yin, J.

(2022). UniXcoder: Unified Cross-Modal Pre-training

for Code Representation. Proceedings of the 60th

Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), 7212–7225.

https://doi.org/10.18653/v1/2022.acl-long.499

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou,

Long, Duan, Nan, Svyatkovskiy, A., Fu, S., Tufano,

M., Deng, S. K., Clement, C., Drain, D., Sundaresan,

N., Yin, J., Jiang, D., & Zhou, M. (2020).

Graphcodebert: Pre-Training Code Representations

with Data Flow. ArXiv:2009.08366.

https://doi.org/10.48550/arXiv.2009.08366

Hannan, S. A., Ahmed, S. J., Ahmed, Q. N., & Thakur, R.

A. (2012). Data Mining and Natural Language

Processing Methods for Extracting Opinions from

Customer Reviews. International Journal of

Computational Intelligence and Information

Security, 3(6), 52–58.

Hindle, A., Barr, E. T., Gabel, M., Su, Z., & Devanbu, P.

(2016). On the Naturalness of Software.

Communications of the ACM, 59(5), 122–131.

https://doi.org/10.1145/2902362

Jalil, S., Rafi, S., LaToza, T. D., Moran, K., & Lam, W.

(2023). ChatGPT and Software Testing Education:

Promises & Perils. 2023 IEEE International

Conference on Software Testing, Verification and

Validation Workshops (ICSTW), 4130–4137.

https://doi.org/10.1109/icstw58534.2023.00078

Jeanrenaud, A., & Romanazzi, P. (2024). Software

Product Evaluation Metrics: A Methodological

Approach. WIT Transactions on Information and

Communication Technologies, 9.

https://doi.org/10.2495/SQM940052

Kanade, A., Maniatis, P., Balakrishnan, G., & Shi, K.

(2020). Learning and Evaluating Contextual

Embedding of Source Code. Proceedings of the 37th

International Conference on Machine Learning,

5110–5121.

Kiran, A., Butt, W. H., Anwar, M. W., Azam, F., &

Maqbool, B. (2019). A Comprehensive Investigation

of Modern Test Suite Optimization Trends, Tools and

Techniques. IEEE Access, 7, 89093–89117.

https://doi.org/10.1109/access.2019.2926384

Kollanus, S., & Koskinen, J. (2009). Survey of Software

Inspection Research. The Open Software

Engineering Journal, 3(1), 15–34.

Kononenko, O., Baysal, O., & Godfrey, M. W. (2016).

Code Review Quality. Proceedings of the 38th

International Conference on Software Engineering,

1028–1038. https://doi.org/10.1145/2884781.2884840

Krasner, H. (2021). The cost of poor software quality in

the US: A 2020 report. https://www.it-cisq.org/cisq-

files/pdf/CPSQ-2020-report.pdf

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep

learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

Lee, S., & Lee, G. G. (2005). Heuristic Methods for

Reducing Errors of Geographic Named Entities

Learned by Bootstrapping. Natural Language

Processing – IJCNLP 2005, 3651, 669–658.

https://doi.org/10.1007/11562214_58

Lertbanjongngam, S., Chinthanet, B., Ishio, T., Kula, R.

G., Leelaprute, P., Manaskasemsak, B., Rungsawang,

A., & Matsumoto, K. (2022). An Empirical

Evaluation of Competitive Programming AI: A Case

Study of AlphaCode. 2022 IEEE 16th International

Workshop on Software Clones (IWSC), 10–15.

https://doi.org/10.1109/iwsc55060.2022.00010

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov,

D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J.,

Liu, Qian, Zheltonozhskii, E., Zhuo, T. Y., Wang, T.,

Dehaene, O., Davaadorj, M., Lamy-Poirier, J.,

Monteiro, J., Shliazhko, O., Vries, H. de. (2023).

Starcoder: May the Source be With You!

ArXiv:2305.06161.

https://doi.org/10.48550/arXiv.2305.06161

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,

J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,

Dal Lago, A., Hubert, T., Choy, P., de Masson

d’Autume, C., Babuschkin, I., Chen, X., Huang, P.-

S., Welbl, J., Gowal, S., Cherepanov, A., … Vinyals,

O. (2022). Competition-Level Code Generation with

AlphaCode. Science, 378(6624), 1092–1097.

https://doi.org/10.1126/science.abq1158

Li, Z., Pan, M., Pei, Y., Zhang, T., Wang, L., & Li, X.

(2024). Empirically Revisiting and Enhancing

Automatic Classification of Bug and Non-Bug

Issues. Frontiers of Computer Science, 18(5),

185207. https://doi.org/10.1007/s11704-023-2771-z

Liu, X., Chen, H., & Xia, W. (2022). Overview of Named

Entity Recognition. Journal of Contemporary

Educational Research, 6(5), 65–68.
https://doi.org/10.26689/jcer.v6i5.3958

https://doi.org/10.1109/icse.2015.55
https://doi.org/10.3115/992628.992709
https://doi.org/10.1109/icsme52107.2021.00049
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.1145/2902362
https://doi.org/10.1109/icstw58534.2023.00078
https://doi.org/10.2495/SQM940052
https://doi.org/10.1109/access.2019.2926384
https://doi.org/10.1145/2884781.2884840
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/11562214_58
https://doi.org/10.1109/iwsc55060.2022.00010
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1007/s11704-023-2771-z
https://doi.org/10.26689/jcer.v6i5.3958

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1154

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao,

C., Ma, J., Lin, Q., & Jiang, Daxin. (2023).

Wizardcoder: Empowering code large language

models with evol-instruct. ArXiv:2306.08568.

https://doi.org/10.48550/arXiv.2306.08568

Luu, Q.-H., Liu, H., & Chen, T. Y. (2023). Can ChatGPT

advance software testing intelligence? An experience

report on metamorphic testing. Software Engineering.

https://doi.org/10.48550/arXiv.2310.19204

Lyu, Z., Li, X., Xie, Z., & Li, M. (2025). Top Pass:

Improve Code Generation by Pass@k-Maximized

Code Ranking. Frontiers of Computer Science, 19(8),

198341. https://doi.org/10.1007/s11704-024-40415-9

Mehmood, A., Ilyas, Q. M., Ahmad, M., & Shi, Z. (2024).

Test Suite Optimization Using Machine Learning

Techniques: A Comprehensive Study. IEEE Access,

12, 168645–168671.

https://doi.org/10.1109/access.2024.3490453

Nakao, H., & Eschbach, R. (2008). Strategic Usage of

Test Case Generation by Combining Two Test Case

Generation Approaches. 2008 Second International

Conference on Secure System Integration and

Reliability Improvement, 213–214.

https://doi.org/10.1109/ssiri.2008.17

OpenAI. (2024). ChatGPT. https://openai.com/blog/chatgpt

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,

C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,

Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller,

L., Simens, M., Askell, A., Welinder, P., Christiano,

P. F., Leike, J., & Lowe, R. (2022). Training

Language Models to Follow Instructions with Human

Feedback. Advances in Neural Information

Processing Systems, 35, 27730–27744.

Ozkaya, I. (2023). Application of Large Language Models

to Software Engineering Tasks: Opportunities, Risks

and Implications. IEEE Software, 40(3), 4–8.

https://doi.org/10.1109/ms.2023.3248401

Özpolat, Z., Yildirim, Ö., & Karabatak, M. (2023).

Artificial Intelligence-Based Tools in Software

Development Processes: Application of ChatGPT.

European Journal of Technic, 13(2), 229–240.

https://doi.org/10.36222/ejt.1330631

Pacheco, C., & Ernst, M. D. (2007). Randoop. Companion

to the 22nd ACM SIGPLAN Conference on Object-

Oriented Programming Systems and Applications

Companion, 815–816.

https://doi.org/10.1145/1297846.1297902

Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L.

(2022). Test Case Selection and Prioritization Using

Machine Learning: a Systematic Literature Review.

Empirical Software Engineering, 27(2), 29.

https://doi.org/10.1007/s10664-021-10066-6

Plein, L., Ouédraogo, W. C., Klein, J., & Bissyandé, T. F.

(2024). Automatic Generation of Test Cases based on

Bug Reports: A Feasibility Study with Large

Language Models. Proceedings of the 2024

IEEE/ACM 46th International Conference on Software

Engineering: Companion Proceedings, 360–361.

https://doi.org/10.1145/3639478.3643119

Prakash, B., B, S., S, S., & R, V. (2020). Optimization of

Test Cases: A Meta-Heuristic Approach. International

Journal of Advanced Trends in Computer Science and

Engineering, 9(4), 6569–6576.

https://doi.org/10.30534/ijatcse/2020/346942020

Qi, L., Dou, W., Wang, W., Li, G., Yu, H., & Wan, S.

(2018). Dynamic Mobile Crowdsourcing Selection

for Electricity Load Forecasting. IEEE Access, 6,

46926–46937.

https://doi.org/10.1109/access.2018.2866641

Qi, L., Zhang, X., Dou, W., & Ni, Q. (2017). A

Distributed Locality-Sensitive Hashing-Based

Approach for Cloud Service Recommendation From

Multi-Source Data. IEEE Journal on Selected Areas

in Communications, 35(11), 2616–2624.

https://doi.org/10.1109/jsac.2017.2760458

Qu, X., Cohen, M. B., & Rothermel, G. (2008).

Configuration-aware regression testing: an empirical

study of sampling and prioritization. Proceedings of

the 2008 International Symposium on Software

Testing and Analysis, 75–86.

https://doi.org/10.1145/1390630.1390641

Radford, A., Narasimhan, K., Salimans, T., & Sutskever,

I. (2018). Improving Language Understanding by

Generative Pre-Training.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,

Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020).

Exploring the Limits of Transfer Learning with a

Unified Text-to-Text Transformer. Journal of

Machine Learning Research, 21(140), 1–67.

Rigby, P. C., & Bird, C. (2013). Convergent

Contemporary Software Peer Review Practices.

Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, 202–212.

https://doi.org/10.1145/2491411.2491444

Rigby, P. C., German, D. M., Cowen, L., & Storey, M.-A.

(2014). Peer Review on Open-Source Software

Projects. ACM Transactions on Software

Engineering and Methodology, 23(4), 1–33.

https://doi.org/10.1145/2594458

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,

Tan, X. E., & Synnaeve, G. (2023). Code Ilama:

Open Foundation Models for Code.

ArXiv:2308.12950.

https://doi.org/10.48550/arXiv.2308.12950

https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2310.19204
https://doi.org/10.1007/s11704-024-40415-9
https://doi.org/10.1109/access.2024.3490453
https://doi.org/10.1109/ssiri.2008.17
https://openai.com/blog/chatgpt
https://doi.org/10.1109/ms.2023.3248401
https://doi.org/10.36222/ejt.1330631
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1145/3639478.3643119
https://doi.org/10.30534/ijatcse/2020/346942020
https://doi.org/10.1109/access.2018.2866641
https://doi.org/10.1109/jsac.2017.2760458
https://doi.org/10.1145/1390630.1390641
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/2594458
https://doi.org/10.48550/arXiv.2308.12950

Alaa Najmi and Mohamed El-Dosuky / Journal of Computer Science 2025, 21 (5): 1140.1155

DOI: 10.3844/jcssp.2025.1140.1155

1155

Saetre, R. (2006). GeneTUC: Natural Language

Understanding in Medical Text.

Schmidhuber, J. (2015). Deep Learning in Neural Networks:
An Overview. Neural Networks, 61, 85–117.

https://doi.org/10.1016/j.neunet.2014.09.003

Singhal, S., Jatana, N., Suri, B., Misra, S., & Fernandez-

Sanz, L. (2021). Systematic Literature Review on

Test Case Selection and Prioritization: A Tertiary

Study. Applied Sciences, 11(24), 12121–12168.

https://doi.org/10.3390/app112412121

Sun, X., Peng, X., Zhang, K., Liu, Y., & Cai, Y. (2019).

How Security Bugs are Fixed and What can be

Improved: An Empirical Study with Mozilla. Science

China Information Sciences, 62(1), 19102.
https://doi.org/10.1007/s11432-017-9459-5

Sun, X., Yang, H., Xia, X., & Li, B. (2017). Enhancing

Developer Recommendation with Supplementary

Information Via Mining Historical Commits. Journal

of Systems and Software, 134, 355–368.

https://doi.org/10.1016/j.jss.2017.09.021

Sze, V., Chen, Y.-H., Yang, T.-J., & Emer, J. S. (2017).

Efficient Processing of Deep Neural Networks: A

Tutorial and Survey. Proceedings of the IEEE,

105(12), 2295–2329.

https://doi.org/10.1109/jproc.2017.2761740

Tallam, S., & Gupta, N. (2006). A Concept Analysis
Inspired Greedy Algorithm for Test Suite

Minimization. ACM SIGSOFT Software Engineering

Notes, 31(1), 35–42.

https://doi.org/10.1145/1108768.1108802

Tao, C., Gao, J., & Wang, T. (2019). Testing and Quality

Validation for AI Software–Perspectives, Issues and

Practices. IEEE Access, 7, 120164–120175.

https://doi.org/10.1109/access.2019.2937107

Tuteja, M., & Dubey, G. (2012). A Research Study on

importance of Testing and Quality Assurance in

Software Development Life Cycle (SDLC) Models.
International Journal of Soft Computing and

Engineering (IJSCE), 2(3), 251–257.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017).

Attention is all You Need. Advances in Neural

Information Processing Systems, 30, 6000–6010.

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., &

Wang, Q. (2024). Software Testing with Large

Language Models: Survey, Landscape and Vision.

IEEE Transactions on Software Engineering, 50(4),

911–936. https://doi.org/10.1109/tse.2024.3368208
Wang, W., Li, G., Ma, B., Xia, X., & Jin, Z. (2020).

Detecting Code Clones with Graph Neural Network

and Flow-Augmented Abstract Syntax Tree. 2020

IEEE 27th International Conference on Software

Analysis, Evolution and Reengineering (SANER),

261–271.

https://doi.org/10.1109/saner48275.2020.9054857

Wei, Z., Xiaoxue, W., Xibing, Y., Shichao, C., Wenxin,

L., & Jun, L. (2017, November). Test suite

minimization with mutation testing-based many-

objective evolutionary optimization. In 2017

International Conference on Software Analysis,

Testing and Evolution (SATE) (pp. 30-36). IEEE.

Wang, Y., Wang, W., Joty, S., & Hoi, S. C. H. (2021a).

CodeT5: Identifier-Aware Unified Pre-Trained

Encoder-Decoder Models for Code Understanding

and Generation. Proceedings of the 2021 Conference

on Empirical Methods in Natural Language

Processing, 8696–8708.

https://doi.org/10.18653/v1/2021.emnlp-main.685

Wang, X., Wang, Y., Mi, F., Zhou, P., Wan, Y., Liu, X.,

Li, Li, Wu, Hao, Liu, J., & Jiang, Xin. (2021b).

SynCobert: Syntax-Guided MultimodalMultimodal

Contrastive Pre-Training for Code Representation.

ArXiv:2108.04556.

https://doi.org/10.48550/arXiv.2108.04556

White, M., Vendome, C., Linares-Vasquez, M., &

Poshyvanyk, D. (2015). Toward Deep Learning

Software Repositories. 2015 IEEE/ACM 12th

Working Conference on Mining Software

Repositories, 334–345.

https://doi.org/10.1109/msr.2015.38

Xin, W., Zheng, Q., & Fengyan, H. (2007). UML Based

Hybrid Model for Generation of Software

Reliability Test Cases. Journal-Xian Jiaotong

University, 41(4), 421.

Yan, M., Xia, X., Zhang, X., Xu, L., & Yang, D. (2017).

A Systematic Mapping Study of Quality Assessment

Models for Software Products. 2017 International

Conference on Software Analysis, Testing and

Evolution (SATE), 63–61.

https://doi.org/10.1109/sate.2017.16

Yin, Y., Chen, L., xu, yueshen, & Wan, J. (2018).

Location-Aware Service Recommendation With

Enhanced Probabilistic Matrix Factorization. IEEE

Access, 6, 62815–62825.

https://doi.org/10.1109/access.2018.2877137

Yin, Y., Xu, W., Xu, Y., Li, H., & Yu, L. (2017).

Collaborative QoS Prediction for Mobile Service

with Data Filtering and SlopeOne Model. Mobile

Information Systems, 2017(1), 1–14.

https://doi.org/10.1155/2017/7356213

https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.3390/app112412121
https://doi.org/10.1007/s11432-017-9459-5
https://doi.org/10.1016/j.jss.2017.09.021
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1145/1108768.1108802
https://doi.org/10.1109/access.2019.2937107
https://doi.org/10.1109/tse.2024.3368208
https://doi.org/10.1109/saner48275.2020.9054857
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.48550/arXiv.2108.04556
https://doi.org/10.1109/msr.2015.38
https://doi.org/10.1109/sate.2017.16
https://doi.org/10.1109/access.2018.2877137
https://doi.org/10.1155/2017/7356213

