Research Article Open Access

BOOM: Rainbow’s Gravity as the Source of Light Refraction

Mohsen Lutephy1
  • 1 Department of Chemistry, Islamic Azad University (IAU), Tehran, Iran

Abstract

On the fully variable light speed (VSL) universe derived by alliance of Mach inertia principle and Planck’s quantized natural units and generalized Minkowski metric, it is extracted the fundamental equation of variable light speed called here Alpha Genesis Prime. Then the fundamental gravity is defined as a vector to justify the light speed variation accordingly. Gravitational vector via a tangential component does set the light speed to be matched with the Alpha Genesis Prime and according to the Pythagorean Theorem; it has also a component normalized to the light velocity. Interestingly by the gravity divided to the tangent and normal components relative to the light velocity we argue the Snell’s law of the light refraction and we find that dependency of the refractive index to the volume density is not fundamental but fundamentally the refractive index follows gravitational potential in bound quantum systems. The gravity is enhanced in bound quantum systems extended from Femto-scale (Nucleuses and strong nuclear force), Micro-gravity (fundamental rainbow’s gravity), the galaxies and clusters as the large scale bound quantum systems, up to the observable universe which the variable gravitational G is Newtonian (constant G in short cosmic time). The refraction of the light is sourced potentially by Rainbow’s gravity in bound quantum systems which the potential integration domain is limited to the wavelength of the photons. Quantum mechanically the photons are force carrier in the range of their wavelength to enhance gravitational G inasmuch as large that atoms to bend the photons similar to enhanced gravity in the nucleuses in the range of hadron wavelengths. Reestablish of the Newtonian mechanics yields to the fundamental gravity which is identical with the refraction of the light and we find that the mechanical potential of the light’s refraction is the gravity.

References

Ali, A. F., Faizal, M., & Majumder, B. (2015). Absence of an effective Horizon for black holes in Gravity’s Rainbow. Europhysics Letters, 109(2), 20001. https://doi.org/10.1209/0295-5075/109/20001
Ali, A. F., & Khalil, M. M. (2015). A proposal for testing gravity’s rainbow. Europhysics Letters, 110(2), 20009. https://doi.org/10.1209/0295-5075/110/20009
Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., & Nanopoulos, D. V. (1997). Distance Measurement and Wave Dispersion in a Liouville-String Approach to Quantum Gravity. International Journal of Modern Physics A, 12(3), 607–623. https://doi.org/10.1142/s0217751x97000566
Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. V., & Sarkar, S. (1998). Tests of quantum gravity from observations of γ-ray bursts. Nature, 393, 763–765. https://doi.org/10.1038/31647
Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., & Smolin, L. (2011). Principle of relative locality. Physical Review D, 84(8), 084010. https://doi.org/10.1103/physrevd.84.084010
Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., & Dvali, G. (1998). New dimensions at a millimeter to a fermi and superstrings at a TeV. Physics Letters B, 436(3–4), 257–263. https://doi.org/10.1016/s0370-2693(98)00860-0
Awad, A., Ali, A. F., & Majumder, B. (2013). Nonsingular rainbow universes. Journal of Cosmology and Astroparticle Physics, 2013(10), 052. https://doi.org/10.1088/1475-7516/2013/10/052
Banks, T., & Fischler, W. (1999). A model for high energy scattering in quantum gravity. ArXiv, 9906038. https://doi.org/10.48550/arXiv.hep-th/9906038
Barrow, J. D., & Magueijo, J. (2013). Intermediate inflation from rainbow gravity. Physical Review D, 88(10), 103525. https://doi.org/10.1103/physrevd.88.103525
Chatrchyan, S., Khachatryan, V., Sirunyan, A. M., Tumasyan, A., Adam, W., Aguilo, E., & Stoykova, S. (2012). Search for dark matter and large extra dimensions in monojet events in pp collisions at √s=7TeV. Journal of High Energy Physics, 2012(9), 1–37. https://doi.org/10.1007/JHEP09(2012)094
Chatrchyan, S., Lehti, S., & Hindrichs, O. (2012). Search for microscopic black holes in pp collisions at $\sqrt {s} = {\text{7TeV}}$. Journal of High Energy Physics, 2012(4), 1–36. https://doi.org/10.1007/JHEP04(2012)061
da Rocha, R., & Coimbra-Araújo, C. H. (2006). Extra dimensions at the CERN LHC via mini-black holes: Effective Kerr-Newman brane-world effects. Physical Review D, 74(5), 055006. https://doi.org/10.1103/physrevd.74.055006
Dimopoulos, S., & Landsberg, G. (2001). Black Holes at the Large Hadron Collider. Physical Review Letters, 87(16), 161602. https://doi.org/10.1103/physrevlett.87.161602
Emparan, R., Horowitz, G. T., & Myers, R. C. (2000). Black Holes Radiate Mainly on the Brane. Physical Review Letters, 85(3), 499. https://doi.org/10.1103/physrevlett.85.499
Feng, Z.-W., & Yang, S.-Z. (2018). Rainbow Gravity Corrections to the Entropic Force. Advances in High Energy Physics, 2018, 1–8. https://doi.org/10.1155/2018/5968284
Galán, P., & Marugán, G. A. M. (2004). Quantum time uncertainty in a gravity’s rainbow formalism. Physical Review D, 70(12), 124003. https://doi.org/10.1103/physrevd.70.124003
Garattini, R. (2013). Distorting general relativity: gravity’s rainbow and f(R) theories at work. Journal of Cosmology and Astroparticle Physics, 2013(06), 017. https://doi.org/10.1088/1475-7516/2013/06/017
Garattini, R., & Majumder, B. (2014a). Electric charges and magnetic monopoles in Gravity’s Rainbow. Nuclear Physics B, 883, 598–614. https://doi.org/10.1016/j.nuclphysb.2014.04.005
Garattini, R., & Majumder, B. (2014b). Naked singularities are not singular in distorted gravity. Nuclear Physics B, 884, 125–141. https://doi.org/10.1016/j.nuclphysb.2014.04.014
Garattini, R., & Mandanici, G. (2012). Particle propagation and effective space-time in gravity’s rainbow. Physical Review D, 85(2), 023507. https://doi.org/10.1103/physrevd.85.023507
Giddings, S. B., & Thomas, S. (2002). High energy colliders as black hole factories: The end of short distance physics. Physical Review D, 65(5), 056010. https://doi.org/10.1103/physrevd.65.056010
Gim, Y., & Kim, W. (2014). Thermodynamic phase transition in the rainbow Schwarzschild black hole. Journal of Cosmology and Astroparticle Physics, 2014(10), 003. https://doi.org/10.1088/1475-7516/2014/10/003
Hackett, J. (2006). Asymptotic flatness in rainbow gravity. Classical and Quantum Gravity, 23(11), 3833. https://doi.org/10.1088/0264-9381/23/11/010
Hendi, S. H., Eslam Panah, B., Panahiyan, S., & Momennia, M. (2016). Gravity’s Rainbow and Its Einstein Counterpart. Advances in High Energy Physics, 2016, 1–21. https://doi.org/10.1155/2016/9813582
Hessaby, M. (1947). Continuous Particles. Proceedings of the National Academy of Sciences, 33(6), 189–194. https://doi.org/10.1073/pnas.33.6.189
Hessaby, M. (1948). Theoretical Evidence for the Existence of a Light-Charged Particle of Mass Greater than That of the Electron. Physical Review, 73(9), 1128. https://doi.org/10.1103/physrev.73.1128
Leiva, C., Saavedra, J., & Villanueva, J. (2009). Geodesic structure of the Schwarzschild black hole in rainbow gravity. Modern Physics Letters A, 24(18), 1443–1451. https://doi.org/10.1142/s0217732309029983
Li, H., Ling, Y., & Han, X. (2009). Modified (A)dS Schwarzschild black holes in rainbow spacetime. Classical and Quantum Gravity, 26(6), 065004. https://doi.org/10.1088/0264-9381/26/6/065004

Physics International
Volume 12 No. 1, 2021, 11-22

DOI: https://doi.org/10.3844/pisp.2021.11.22

Submitted On: 16 July 2021 Published On: 23 December 2021

How to Cite: Lutephy, M. (2021). BOOM: Rainbow’s Gravity as the Source of Light Refraction. Physics International, 12(1), 11-22. https://doi.org/10.3844/pisp.2021.11.22

  • 3,967 Views
  • 1,986 Downloads
  • 0 Citations

Download

Keywords

  • Quantum Gravity
  • Cosmology
  • Planck Units
  • Planck Stars
  • Machian Universe
  • Variable Light Speed
  • Quantization of the Space-Time